Parameterized Model Checking of Token-Passing Systems

  • Benjamin Aminof
  • Swen Jacobs
  • Ayrat Khalimov
  • Sasha Rubin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8318)


We revisit the parameterized model checking problem for token-passing systems and specifications in indexed CTL  ∗ \X. Emerson and Namjoshi (1995, 2003) have shown that parameterized model checking of indexed CTL  ∗ \X in uni-directional token rings can be reduced to checking rings up to some cutoff size. Clarke et al. (2004) have shown a similar result for general topologies and indexed LTL \X, provided processes cannot choose the directions for sending or receiving the token.

We unify and substantially extend these results by systematically exploring fragments of indexed CTL  ∗ \X with respect to general topologies. For each fragment we establish whether a cutoff exists, and for some concrete topologies, such as rings, cliques and stars, we infer small cutoffs. Finally, we show that the problem becomes undecidable, and thus no cutoffs exist, if processes are allowed to choose the directions in which they send or from which they receive the token.


Model Check Temporal Logic Atomic Proposition Label Transition System Initial Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aminof, B., Jacobs, S., Khalimov, A., Rubin, S.: Parameterized Model Checking of Token-Passing Systems, pre-print on (2013)Google Scholar
  2. 2.
    Baier, C., Katoen, J.P., et al.: Principles of model checking, vol. 26202649. MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  3. 3.
    Bonatti, P.A., Lutz, C., Murano, A., Vardi, M.Y.: The complexity of enriched μ- calculi. In: Logical Methods in Computer Science (LMCS 2008), vol. 4(3:11), pp. 1–27 (2008)Google Scholar
  4. 4.
    Browne, M.C., Clarke, E.M., Grumberg, O.: Reasoning about networks with many identical finite state processes. Inf. Comput. 81, 13–31 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Clarke, E., Talupur, M., Touili, T., Veith, H.: Verification by network decomposition. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 276–291. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of ad hoc networks. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 313–327. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Emerson, E.A., Kahlon, V.: Parameterized model checking of ring-based message passing systems. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 325–339. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Emerson, E.A., Namjoshi, K.S.: On reasoning about rings. Int. J. Found. Comput. Sci. 14(4), 527–550 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Emerson, E.A., Sistla, A.P.: Symmetry and model checking. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 463–478. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  10. 10.
    Emerson, E.A., Namjoshi, K.: Reasoning about rings. In: POPL, pp. 85–94 (1995)Google Scholar
  11. 11.
    Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In: Symposium on Logic in Computer Science, p. 352 (1999)Google Scholar
  12. 12.
    German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM 39(3), 675–735 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Counter attack on byzantine generals: Parameterized model checking of fault-tolerant distributed algorithms. CoRR abs/1210.3846 (2012)Google Scholar
  14. 14.
    Khalimov, A., Jacobs, S., Bloem, R.: Towards efficient parameterized synthesis. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 108–127. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Rabinovich, A.: On compositionality and its limitations. ACM Trans. Comput. Logic 8(1) (January 2007)Google Scholar
  16. 16.
    Shamir, S., Kupferman, O., Shamir, E.: Branching-depth hierarchies. ENTCS 39(1), 65–78 (2003)Google Scholar
  17. 17.
    Suzuki, I.: Proving properties of a ring of finite-state machines. Inf. Process. Lett. 28(4), 213–214 (1988)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Benjamin Aminof
    • 1
  • Swen Jacobs
    • 2
  • Ayrat Khalimov
    • 2
  • Sasha Rubin
    • 1
    • 3
  1. 1.IST AustriaAustria
  2. 2.TU GrazAustria
  3. 3.TU WienAustria

Personalised recommendations