SAT-Based Synthesis Methods for Safety Specs

  • Roderick Bloem
  • Robert Könighofer
  • Martina Seidl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8318)

Abstract

Automatic synthesis of hardware components from declarative specifications is an ambitious endeavor in computer aided design. Existing synthesis algorithms are often implemented with Binary Decision Diagrams (BDDs), inheriting their scalability limitations. Instead of BDDs, we propose several new methods to synthesize finite-state systems from safety specifications using decision procedures for the satisfiability of quantified and unquantified Boolean formulas (SAT-, QBF- and EPR-solvers). The presented approaches are based on computational learning, templates, or reduction to first-order logic. We also present an efficient parallelization, and optimizations to utilize reachability information and incremental solving. Finally, we compare all methods in an extensive case study. Our new methods outperform BDDs and other existing work on some classes of benchmarks, and our parallelization achieves a super-linear speedup.

Keywords

Reactive Synthesis SAT-Solving Quantified Boolean Formulas Effectively Propositional Logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Becker, B., Ehlers, R., Lewis, M., Marin, P.: ALLQBF solving by computational learning. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 370–384. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. FAIA, vol. 185. IOS Press (2009)Google Scholar
  4. 4.
    Bloem, R., Galler, S.J., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.: Specify, compile, run: Hardware from PSL. Electronic Notes in Theoretical Computer Science 190(4), 3–16 (2007)CrossRefGoogle Scholar
  5. 5.
    Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety specs. CoRR, abs/1311.3530 (2013), http://arxiv.org/abs/1311.3530
  6. 6.
    Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength verification tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 24–40. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Ehlers, R.: Symbolic bounded synthesis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 365–379. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Ehlers, R., Könighofer, R., Hofferek, G.: Symbolically synthesizing small circuits. In: FMCAD 2012, pp. 91–100. IEEE (2012)Google Scholar
  10. 10.
    Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S., Xiao, C.: The Daikon system for dynamic detection of likely invariants. Sci. Comput. Program. 69(1-3), 35–45 (2007)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Filiot, E., Jin, N., Raskin, J.-F.: An antichain algorithm for LTL realizability. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 263–277. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Fröhlich, A., Kovasznai, G., Biere, A.: A DPLL algorithm for solving DQBF. In: Pragmatics of SAT (PoS 2012, aff. to SAT 2012) (2012)Google Scholar
  13. 13.
    Janota, M., Marques-Silva, J.: Abstraction-based algorithm for 2QBF. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 230–244. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Jiang, J.-H.R., Lin, H.-P., Hung, W.-L.: Interpolating functions from large boolean relations. In: International Conference on Computer-Aided Design (ICCAD 2009), pp. 779–784. IEEE (2009)Google Scholar
  15. 15.
    Kojevnikov, A., Kulikov, A.S., Yaroslavtsev, G.: Finding efficient circuits using SAT-solvers. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 32–44. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Könighofer, R., Bloem, R.: Automated error localization and correction for imperative programs. In: FMCAD 2011, pp. 91–100. IEEE (2011)Google Scholar
  17. 17.
    Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic (System description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput. Syst. Sci. 21(3), 317–353 (1980)CrossRefMATHGoogle Scholar
  19. 19.
    Lonsing, F., Biere, A.: DepQBF: A dependency-aware QBF solver. JSAT 7(2-3), 71–76 (2010)Google Scholar
  20. 20.
    Moon, I., Kukula, J.H., Shiple, T.R., Somenzi, F.: Least fixpoint approximations for reachability analysis. In: ICCAD 1999, pp. 41–44. IEEE (1999)Google Scholar
  21. 21.
    Morgenstern, A., Gesell, M., Schneider, K.: Solving games using incremental induction. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 177–191. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  22. 22.
    Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-based certificate extraction for QBF (tool presentation). In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 430–435. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J. Symb. Comput. 2(3), 293–304 (1986)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Seidl, M., Könighofer, R.: Partial witnesses from preprocessed quantified Boolean formulas. In: DATE 2014 (to appear, 2014)Google Scholar
  26. 26.
    Seidl, M., Lonsing, F., Biere, A.: qbf2epr: A tool for generating EPR formulas from QBF. In: Workshop on Practical Aspects of Automated Reasoning (2012)Google Scholar
  27. 27.
    Sohail, S., Somenzi, F.: Safety first: A two-stage algorithm for LTL games. In: FMCAD 2009, pp. 77–84. IEEE (2009)Google Scholar
  28. 28.
    Solar-Lezama, A.: The sketching approach to program synthesis. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 4–13. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  29. 29.
    Staber, S., Bloem, R.: Fault localization and correction with QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 355–368. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  30. 30.
    Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Roderick Bloem
    • 1
  • Robert Könighofer
    • 1
  • Martina Seidl
    • 2
  1. 1.Institute for Applied Information Processing and Communications (IAIK)Graz University of TechnologyAustria
  2. 2.Institute for Formal Models and VerificationJohannes Kepler UniversityLinzAustria

Personalised recommendations