Advertisement

Efficient and Perfectly Unlinkable Sanitizable Signatures without Group Signatures

  • Christina Brzuska
  • Henrich C. Pöhls
  • Kai Samelin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8341)

Abstract

Sanitizable signatures allow for controlled modification of signed data. The essential security requirements are accountability, privacy and unlinkability. Unlinkability is a strong notion of privacy. Namely, it makes it hard to link two sanitized messages that were derived from the same message-signature pair. In this work, we strengthen the standard unlinkability definition by Brzuska et al. at PKC ’10, making it robust against malicious or buggy signers. While state-of-the art schemes deploy costly group signatures to achieve unlinkability, our construction uses standard digital signatures, which makes them compatible with existing infrastructure.

We construct a sanitizable signature scheme that satisfies the strong notion of perfect unlinkability and, simultaneously, achieves the strongest notion of accountability, i.e., non-interactive public accountability. Our construction is not only legally compliant, but also highly efficient, as the measurements of our reference implementation show. Finally, we revisit the security model by Canard et al. and correct a small flaw in their security definition given at AfricaCrypt ’12.

Keywords

Signature Scheme Proxy Signature Valid Signature Strong Notion Group Signature Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.: Computing on authenticated data. ePrint Report 2011/096 (2011)Google Scholar
  2. 2.
    An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In: de Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: New privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable signatures, and fiat-shamir without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Brzuska, C., et al.: Redactable Signatures for Tree-Structured Data: Definitions and Constructions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 87–104. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J., Schröder, D., Volk, F.: Security of Sanitizable Signatures Revisited. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Sanitizable signatures: How to partially delegate control for authenticated data. In: Proc. of BIOSIG. LNI, vol. 155, pp. 117–128. GI (2009)Google Scholar
  10. 10.
    Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Unlinkability of Sanitizable Signatures. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 444–461. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Brzuska, C., Pöhls, H.C., Samelin, K.: Non-Interactive Public Accountability for Sanitizable Signatures. In: De Capitani di Vimercati, S., Mitchell, C. (eds.) EuroPKI 2012. LNCS, vol. 7868, pp. 178–193. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Canard, S., Jambert, A.: On extended sanitizable signature schemes. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 179–194. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Canard, S., Jambert, A., Lescuyer, R.: Sanitizable signatures with several signers and sanitizers. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 35–52. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Caplan, R.M.: HIPAA. Health Insurance Portability and Accountability Act of 1996. Dent Assist 72(2), 6–8 (1997)Google Scholar
  16. 16.
    Chang, E.-C., Lim, C.L., Xu, J.: Short Redactable Signatures Using Random Trees. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 133–147. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  18. 18.
    de Meer, H., Pöhls, H.C., Posegga, J., Samelin, K.: Scope of security properties of sanitizable signatures revisited. In: ARES 2013, pp. 188–197 (2013)Google Scholar
  19. 19.
    Deiseroth, B., Fehr, V., Fischlin, M., Maasz, M., Reimers, N.F., Stein, R.: Computing on authenticated data for adjustable predicates. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 53–68. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Goldreich, O.: Two remarks concerning the goldwasser-micali-rivest signature scheme. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 104–110. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  21. 21.
    Gong, J., Qian, H., Zhou, Y.: Fully-secure and practical sanitizable signatures. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 300–317. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Haber, S., Hatano, Y., Honda, Y., Horne, W.G., Miyazaki, K., Sander, T., Tezoku, S., Yao, D.: Efficient signature schemes supporting redaction, pseudonymization, and data deidentification. In: ASIACCS, pp. 353–362 (2008)Google Scholar
  23. 23.
    Hanser, C., Slamanig, D.: Blank digital signatures. In: AsiaCCS, pp. 95–106. ACM (2013)Google Scholar
  24. 24.
    Izu, T., Kunihiro, N., Ohta, K., Sano, M., Takenaka, M.: Sanitizable and Deletable Signature. In: Chung, K.-I., Sohn, K., Yung, M. (eds.) WISA 2008. LNCS, vol. 5379, pp. 130–144. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  26. 26.
    Jonsson, J., Kaliski, B.: Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1. RFC 3447 (Informational) (February 2003)Google Scholar
  27. 27.
    Klonowski, M., Lauks, A.: Extended Sanitizable Signatures. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 343–355. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Krawczyk, H., Rabin, T.: Chameleon Hashing and Signatures. In: Symposium on Network and Distributed Systems Security, pp. 143–154 (2000)Google Scholar
  29. 29.
    Kundu, A., Bertino, E.: How to authenticate graphs without leaking. In: EDBT, pp. 609–620 (2010)Google Scholar
  30. 30.
    Lai, J., Ding, X., Wu, Y.: Accountable trapdoor sanitizable signatures. In: Deng, R.H., Feng, T. (eds.) ISPEC 2013. LNCS, vol. 7863, pp. 117–131. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  31. 31.
    Mambo, M., Usuda, E., Okamoto, K.: and Okamoto. Proxy signatures for delegating signing operation. In: CCS 1996, pp. 48–57. ACM, New York (1996)Google Scholar
  32. 32.
    Miyazaki, K., Hanaoka, G., Imai, H.: Digitally signed document sanitizing scheme based on bilinear maps. In: ASIACCS 2006, pp. 343–354. ACM (2006)Google Scholar
  33. 33.
    Miyazaki, K., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H., Tezuka, S., Imai, H.: Digitally Signed Document Sanitizing Scheme with Disclosure Condition Control. IEICE Transactions 88-A(1), 239–246 (2005)CrossRefGoogle Scholar
  34. 34.
    Pöhls, H.C., Höhne, F.: The role of data integrity in EU digital signature legislation — achieving statutory trust for sanitizable signature schemes. In: Meadows, C., Fernandez-Gago, C. (eds.) STM 2011. LNCS, vol. 7170, pp. 175–192. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  35. 35.
    Pöhls, H.C., Peters, S., Samelin, K., Posegga, J., de Meer, H.: Malleable signatures for resource constrained platforms. In: Cavallaro, L., Gollmann, D. (eds.) WISTP 2013. LNCS, vol. 7886, pp. 18–33. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  36. 36.
    Pöhls, H.C., Samelin, K., Posegga, J.: Sanitizable Signatures in XML Signature — Performance, Mixing Properties, and Revisiting the Property of Transparency. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 166–182. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  37. 37.
    Samelin, K., Pöhls, H.C., Bilzhause, A., Posegga, J., de Meer, H.: On Structural Signatures for Tree Data Structures. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 171–187. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  38. 38.
    Samelin, K., Pöhls, H.C., Bilzhause, A., Posegga, J., de Meer, H.: Redactable signatures for independent removal of structure and content. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 17–33. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  39. 39.
    Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access control models. Computer 29(2), 38–47 (1996)CrossRefGoogle Scholar
  40. 40.
    Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  41. 41.
    Yum, D.H., Lee, P.J.: Sanitizable signatures reconsidered. IEICE Transactions 94-A(2), 717–724 (2011)CrossRefGoogle Scholar
  42. 42.
    Yum, D.H., Seo, J.W., Lee, P.J.: Trapdoor sanitizable signatures made easy. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 53–68. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Christina Brzuska
    • 1
  • Henrich C. Pöhls
    • 2
    • 4
  • Kai Samelin
    • 3
    • 4
  1. 1.Tel Aviv UniversityIsrael
  2. 2.Chair of IT-SecurityUniversity of PassauGermany
  3. 3.Chair of Computer Networks and Computer CommunicationUniversity of PassauGermany
  4. 4.Institute of IT-Security and Security Law (ISL)University of PassauGermany

Personalised recommendations