Advertisement

Selenoneine in Marine Organisms

  • Michiaki YamashitaEmail author
  • Yumiko Yamashita
Part of the Springer Handbooks book series (SHB)

Abstract

A novel selenium-containing compound, selenoneine, 2-selenyl- N α Open image in new window, N α Open image in new window, N α Open image in new window-trimethyl-l-histidine, has been identified as the predominant form of organic selenium in the blood and tissues of tuna. This selenium compound has a selenium atom in the imidazole ring, and is a selenium analog of a thiol compound, ergothioneine. Selenoneine has radical scavenging activity and exerts an antioxidant effect by binding to hemoglobin and myoglobin, protecting them from iron auto-oxidation. In addition, selenoneine has detoxifying activity against methylmercury (MeHg). Selenoneine has been found to be a specific substrate for the organic cation/carnitine transporter OCTN1 (solute carrier family 22 Open image in new window member 4 Open image in new window, SLC22A4), and mediated the excretion and demethylation of MeHg by exosomal small vesicle formation. The dietary intake of selenoneine through fish consumption is an important selenium source in the human diet. Since selenoneine and its related selenoproteins have strong antioxidant activities, disease protective functions, such as anticarcinogenesis and aging effects, may be expected.

Keywords

Inductively Couple Plasma Mass Spectrometry Bluefin Tuna Inorganic Mercury Selenium Deficiency MeHg Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
DAN

diaminonaphthalene

DNA

deoxyribonucleic acid

DPPH

1,1-diphenyl-2-picrylhydrazyl

ESCRT

endosomal sorting complexes required for transport

GPC

gel permeation chromatography

GPx

glutathione peroxidase

GSH

glutathione

HPLC

high-performance liquid chromatography

HUVEC

human umbilical vein endothelial cells

ICP-MS

inductively coupled plasma mass spectrometry

ICP

ion concentration polarization

JNK

c-Jun N-terminal kinase

LC

liquid chromatography

MA

maslinic acid

MO

morpholino antisense oligo

MS

mass spectroscopy

Mb

met-myoglobin

MeHgCy

MeHg-cysteine

MeHg

methylmercury

NHE

normal hydrogen reference electrode

ROS

reactive oxygen species

SMase  1

sphingomyolinase 1

SeN

selenoneine

Sec-tRNA

Selenocysteine-transfer RNA

cDNA

complementary DNA

References

  1. [46.1]
    F. Gerald Jr., S.B. Combs: The Role of Selenium in Nutrition (Academic, New York 1986)Google Scholar
  2. [46.2]
    S. Himeno, N. Imura: New aspects of physiological and pharmacological roles of selenium, J. Health Sci. 46, 1–6 (2000)CrossRefGoogle Scholar
  3. [46.3]
    M.P. Rayman: The importance of selenium to human health, Lancet 356, 233–241 (2000)CrossRefGoogle Scholar
  4. [46.4]
    D.L. Hatfield, M.J. Berry, V.N. Gladyshev (Eds.): Selenium: Its molecular biology and role in human health, 2nd edn. (Springer, New York 2006)Google Scholar
  5. [46.5]
    G.V. Kryukov, S. Castellano, S.V. Novoselov, A.V. Lobanov, O. Zehtab, R. Guigó, V.N. Gladyshev: Characterization of mammalian selenoproteomes, Science 300, 1439–1443 (2003)CrossRefGoogle Scholar
  6. [46.6]
    S.J. Fairweather-Tait, R. Collings, R. Hurst: Selenium bioavailability: Current knowledge and future research requirements, Am. J. Clin. Nutr. 91(suppl), S1484–S1491 (2010)CrossRefGoogle Scholar
  7. [46.7]
    Y. Yamashita, M. Yamashita: Identification of a novel selenium-containing compound, selenoneine, as the predominant chemical form of organic selenium in the blood of bluefin tuna, J. Biol. Chem. 285, 18134–18138 (2010)CrossRefGoogle Scholar
  8. [46.8]
    Y. Yamashita, T. Yabu, M. Yamashita: Discovery of the strong antioxidant selenoneine in tuna and selenium redox metabolism, World J. Biol. Chem. 1, 144–150 (2010)CrossRefGoogle Scholar
  9. [46.9]
    Y. Yamashita, H. Amlund, T. Suzuki, T. Hara, M.A. Hossain, T. Yabu, K. Touhata, M. Yamashita: Selenoneine, total selenium, and total mercury content in the muscle of fishes, Fish. Sci. 77, 679–686 (2011)CrossRefGoogle Scholar
  10. [46.10]
    T. Rannem, K. Ladefoged, E. Hylander, J. Hegnhij, S. Jarnum: Selenium status in patients with Crohn's disease, Am. J. Clin. Nutr. 56, 933–937 (1992)Google Scholar
  11. [46.11]
    R. Hasunuma, T. Ogawa, Y. Kawanishi: Fluorometric determination of selenium in nanogram amounts in biological materials using 2,3-diaminonaphthalene, Anal. Biochem. 126(2), 242–245 (1982)CrossRefGoogle Scholar
  12. [46.12]
    Y. Yamashita, M. Yamashita, H. Iida: Selenium content in seafood in Japan, Nutrients 5(2), 388–395 (2013)CrossRefGoogle Scholar
  13. [46.13]
    C. Jacob, G.I. Giles, N.M. Giles, H. Sies: Sulfur and selenium: The role of oxidation state in protein structure and function, Angew. Chem. Int. Ed. 42, 4742–4758 (2003)CrossRefGoogle Scholar
  14. [46.14]
    M. Yamashita, Y. Yamashita, T. Suzuki, K. Kani, N. Mizusawa, S. Imamura, K. Takemoto, T. Hara, M.A. Hossain, T. Yabu, K. Touhata: Selenoneine, a~novel selenium-containing compound, mediates detoxification mechanisms against methylmercury accumulation and toxicity in zebrafish embryo, Mar. Biotechnol. 15, 559–590 (2013)CrossRefGoogle Scholar
  15. [46.15]
    Y. Kato, Y. Kubo, D. Iwata, S. Kato, T. Sudo, T. Sugiura, T. Kagaya, T. Wakayama, A. Hirayama, M. Sugimoto, K. Sugihara, S. Kaneko, T. Soga, M. Asano, M. Tomita, T. Matsui, M. Wada, A. Tsuji: Gene knockout and metabolome analysis of carnitine/organic cation transporter OCTN1, Pharm. Res. 27, 832–840 (2011)CrossRefGoogle Scholar
  16. [46.16]
    I. Tamai, H. Yabuuchi, J. Nezu, Y. Sai, A. Oku, M. Shimane, A. Tsuji: Cloning and characterization of a~novel human pH-dependent organic cation transporter, OCTN1, FEBS Letters 419, 107–111 (1997)CrossRefGoogle Scholar
  17. [46.17]
    D. Gründemann, S. Harlfinger, S. Golz, A. Geerts, A. Lazar, R. Berkels, N. Jung, A. Rubbert, E. Schömig: Discovery of the ergothioneine transporter, Proc. Natl. Acad. Sci. USA 102, 5256–5261 (2005)CrossRefGoogle Scholar
  18. [46.18]
    G.J. Weber, S.E. Choe, K.A. Dooley, N.N. Paffett-Lugassy, Y. Zhou, L.I. Zon: Mutant-specific gene programs in the zebrafish, Blood 106, 521–530 (2005)CrossRefGoogle Scholar
  19. [46.19]
    D. Taubert, G. Grimberg, N. Jung, A. Rubbert, E. Schömig: Functional role of the 503F variant of the organic cation transporter OCTN1 in Crohn's disease, Gut 54, 1505–1506 (2005)CrossRefGoogle Scholar
  20. [46.20]
    H. Koepsell, K. Lips, C. Volk: Polyspecific organic cation transporters: Structure, function, physiological roles, and biopharmaceutical implications, Pharm. Res. 24, 1227–1250 (2007)CrossRefGoogle Scholar
  21. [46.21]
    Y. Yamashita, T. Suzuki, T. Hara, S. Imamura, M.A. Hossain, T. Yabu, K. Touhata, M. Yamashita: Prevention of metmyoglobin formation in the red muscles of the yellowtail by intravenous injection of the selenium-containing antioxidant selenoneine, Nippon Suisan Gakkaishi 79(5), 863–868 (2013)CrossRefGoogle Scholar
  22. [46.22]
    M. Yamashita, Y. Yamashita, T. Ando, J. Wakamiya, S. Akiba: Identification and determination of selenoneine, 2-selenyl-$N_\alpha$,$N_\alpha$,$N_\alpha$-trimethyl-l-histidine, as the major organic selenium in red blood cells in a fish-eating population on remote Japanese islands, Biol. Trace Elem. Res. 156, 36–44 (2013)CrossRefGoogle Scholar
  23. [46.23]
    M. Martini, A.M. Ferrara, M. Giachelia, E. Panieri, K. Siminovitch, T. Galeotti, L.M. Larocca, G. Pani: Association of the OCTN1/1672T variant with increased risk for colorectal cancer in young individuals and ulcerative colitis patients, Inflamm. Bowel Dis. 18(3), 439–448 (2012)CrossRefGoogle Scholar
  24. [46.24]
    Dietary Supplement Fact Sheet: Selenium. National Institute of Health (2009) Available from: http://ods.od.nih.gov/factsheets/selenium.asp
  25. [46.25]
    L. Hagmar, M. Persson-Moschos, B. Akesson, A. Schütz: Plasma levels of selenium, selenoprotein P and glutathione peroxidase and their correlations to fish intake and serum levels of thyrotropin and thyroid hormones: A study on Latvian fish consumers, Eur. J. Clin. Nutr. 52, 796–800 (1998)CrossRefGoogle Scholar
  26. [46.26]
    T.E. Fox, E.G. Van den Heuvel, C.A. Atherton, J.R. Dainty, D.J. Lewis, N.J. Langford, H.M. Crews, J.B. Luten, M. Lorentzen, F.W. Sieling, P. van Aken-Schneyder, M. Hoek, M.J. Kotterman, P. van Dael, S.J. Fairweather-Tait: Bioavailability of selenium from fish, yeast and selenate: A comparative study in humans using stable isotopes, Eur. J. Clin. Nutr. 58, 343–349 (2004)CrossRefGoogle Scholar
  27. [46.27]
    T.E. Fox, C. Atherton, J.R. Dainty, D.J. Lewis, N.J. Langford, M.J. Baxter, H.M. Crews, S.J. Fairweather-Tait: Absorption of selenium from wheat, garlic, and cod intrinsically labeled with Se-77 and Se-82 stable isotopes, Int. J. Vitam. Nutr. Res. 75, 179–186 (2005)CrossRefGoogle Scholar
  28. [46.28]
    P.A. McAdam, L.A. Orville: Chronic toxicity and retention of dietary selenium fed to rats as d- or l-selenomethionine, selenite, or selenate, Nutr. Res. 7, 601–610 (1987)CrossRefGoogle Scholar
  29. [46.29]
    G. Alfthan, A. Aro, H. Arvilommi, J.K. Huttunen: Selenium metabolism and platelet glutathione peroxidase activity in healthy Finnish men: Effects of selenium yeast, selenite, and selenate, Am. J. Clin. Nutr. 53, 120–125 (1991)Google Scholar
  30. [46.30]
    G.N. Schrauzer: Selenomethionine: A review of its nutritional significance, metabolism and toxicity, J. Nutr. 130, 1653–1656 (2000)Google Scholar
  31. [46.31]
    T.E. Fox, E.G. Van den Heuvel, C.A. Atherton, J.R. Dainty, D.J. Lewis, N.J. Langford, H.M. Crews, J.B. Luten, M. Lorentzen, F.W. Sieling, P. van Aken-Schneyder, M. Hoek, M.J. Kotterman, P. van Dael, S.J. Fairweather-Tait: Bioavailability of selenium from fish, yeast and selenate: A comparative study in humans using stable isotopes, Eur. J. Clin. Nutr. 58, 343–349 (2004)CrossRefGoogle Scholar
  32. [46.32]
    G.F. Combs Jr.: Impact of selenium and cancer-prevention findings on the nutrition-health paradigm, Nutr. Cancer 40, 6–11 (2001)CrossRefGoogle Scholar
  33. [46.33]
    G.F. Combs Jr.: Current evidence and research needs to support a health claim for selenium and cancer prevention, J. Nutr. 135, 343–347 (2005)Google Scholar
  34. [46.34]
    M.I. Jackson, G.F. Combs Jr.: Selenium and anticarcinogenesis: Underlying mechanisms, Curr. Opin. Clin. Nutr. Metab. Care 11, 718–726 (2008)CrossRefGoogle Scholar
  35. [46.35]
    C. Ip: Lessons from basic research in selenium and cancer prevention, J. Nutr. 128, 1845–1854 (1998)Google Scholar
  36. [46.36]
    M. Tan, S. Li, M. Swaroop, K. Guan, L.W. Oberley, Y. Sun: Transcriptional activation of the human glutathione peroxidase promoter by p53, J. Biol. Chem. 274(17), 12061–12066 (1999)CrossRefGoogle Scholar
  37. [46.37]
    M. Yamashita: Stress responses of fish during catching process. In: Quality control of tuna meat by optimization of fishing and handling, ed. by K. Konno, Y. Ochiai, Y. Fukuda (Koseisha-Koseikaku, Tokyo 2009) pp. 81–94Google Scholar
  38. [46.38]
    J.T. Rotruck, A.L. Pope, H.E. Ganther, W.G. Hoekstra: Prevention of oxidative damage to rat erythrocytes by dietary selenium, J. Nutr. 102, 689–696 (1972)Google Scholar
  39. [46.39]
    H.E. Ganther, C. Goudie, M.L. Sunde, M.J. Kopecky, P. Wagner: Selenium: Relation to decreased toxicity of methylmercury added to diets containing tuna, Science 175, 1122–1124 (1972)CrossRefGoogle Scholar
  40. [46.40]
    M.A. Friedman, L.R. Eaton, W.H. Carter: Protective effects of freeze dried swordfish on methylmercury chloride toxicity in rats, Bull. Environ. Cont. Toxicol. 19, 436–443 (1978)CrossRefGoogle Scholar
  41. [46.41]
    G. Ohi, S. Nishigaki, H. Seki, Y. Tamura, T. Maki, K. Minowa, Y. Shimamura, I. Mizoguchi, Y. Inaba, Y. Takizawa, Y. Kawanishi: The protective potency of marine animal meat against the neurotoxicity of methylmercury: Its relationship with the organ distribution of mercury and selenium in the rat, Food Cosmet. Toxicol. 18, 139–145 (1980)CrossRefGoogle Scholar
  42. [46.42]
    P.-S. Ng, H. Ji, K. Matsumoto, S. Yamazaki, T. Kogure, K. Tagai, H. Nagasawa: Striped dolphin detoxificates mercury as insoluble Hg(S,Se) in the liver, Proc. Jpn. Acad. 77, 178–183 (2001)CrossRefGoogle Scholar
  43. [46.43]
    K. Itano, S. Kawai, R. Tatsukawa: Properties of mercury and selenium in salt-insoluble fraction of muscles in striped dolphin, Bull. Jpn. Soc. Sci. Fish. 51, 1129–1131 (1985)CrossRefGoogle Scholar
  44. [46.44]
    T.W. Clarkson: Recent advances in toxicology of mercury with emphasis on the alkyl mercurials, Crit. Rev. Toxicol. 1, 203–234 (1972)CrossRefGoogle Scholar
  45. [46.45]
    L. Friberg, N.K. Mottet: Accumulation of methylmercury and inorganic mercury in the brain, Biol. Trace Elem. Res. 21, 201–206 (1989)CrossRefGoogle Scholar
  46. [46.46]
    M. Nigro, C. Leonzio: Intracellular storage of mercury and selenium in different marine vertebrates, Mar. Ecol. Prog. Ser. 135, 137–143 (1996)CrossRefGoogle Scholar
  47. [46.47]
    F. Palmisano, N. Cardellicchiob, P.G. Zambonin: Speciation of mercury in dolphin liver: A two-stage mechanism for the demethylation accumulation process and role of selenium, Mar. Environ. Res. 40, 109–121 (1995)CrossRefGoogle Scholar
  48. [46.48]
    L.J. Raymond, N.V. Ralston: Mercury: Selenium interactions and health implications, Seychelles Med. Dent. J. 7, 52–56 (2004)Google Scholar
  49. [46.49]
    N.V.C. Ralston, C.R. Ralston, J.L. Blackwell, L.J. Raymond: Dietary and tissue selenium in relation to methylmercury toxicity, Neurotoxicology 29, 802–811 (2008)CrossRefGoogle Scholar
  50. [46.50]
    M.W. Graner, O. Alzate, A.M. Dechkovskaia, J.D. Keene, J.H. Sampson, D.A. Mitchell, D.D. Bigner: Proteomic and immunologic analyses of brain tumor exosomes, FASEB Journal 23, 1541–1557 (2009)CrossRefGoogle Scholar
  51. [46.51]
    T. Yabu, H. Shiba, T. Shibasaki, T. Nakanishi, S. Imamura, K. Touhata, M. Yamashita: Stress-induced ceramide generation and apoptosis and apoptosis via the phosphorylation and activation of nSMase1 by JNK signaling, Cell Death Differ. (2014)Google Scholar
  52. [46.52]
    T.P. Begley, A.E. Walts, C.T. Walsh: Bacterial organomercurial lyase: Overproduction, isolation, and characterization, Biochemistry 25, 7186–7192 (1986)CrossRefGoogle Scholar
  53. [46.53]
    K. Trajkovic, C. Hsu, S. Chiantia, L. Rajendran, D. Wenzel, F. Wieland, P. Schwille, B. Brügger, M. Simons: Ceramide triggers budding of exosome vesicles into multivesicular endosomes, Science 319, 1244–1247 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Food Safety Assessment Research GroupNational Research Institute of Fisheries ScienceYokohamaJapan

Personalised recommendations