Advertisement

Performance Analysis and Optimization of PalaBos on Petascale Sunway BlueLight MPP Supercomputer

  • Min Tian
  • Weidong Gu
  • Jingshan Pan
  • Meng Guo
Part of the Communications in Computer and Information Science book series (CCIS, volume 405)

Abstract

We present some results conceming computational performances of the open source CFD software PalaBos, in terms of scalability and efficiency, on the petascale Sunway BlueLight MPP system. Based on the numerical simulated program of 3D cavity lid driven flow, the optimization methods in I/O, communication, memory access, etc, are applied in debugging and optimization of the parallel MPI program. Experimental results of large scalar parallel computing of 3D cavity lid driven flow show that, the parallel strategy and optimization methods are correct and efficient. The parallel implementation scheme is very useful and can shorten the computing time explicitly.

Keywords

Palabos petascale computing 3D cavity lid driven flow parallel I/O 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Geller, S., Krafczyk, M., Tolke, J., Turek, S., Hron, J.: Benchmark computations based on lattice-Boltzmann, finite element and finite volume methods for laminar flows. Computer & Fluids 35, 888–897 (2006)CrossRefzbMATHGoogle Scholar
  2. 2.
    Palabos - CFD complex physics, http://www.palabos.org/
  3. 3.
    Stahl, B., Bastien, C., Jonas, L.: Measurements of wall shear stress with the lattice Boltzmann method and staircase approximation of boundaries. Computers and Fluids 39(9), 1625–1633 (2010)CrossRefzbMATHGoogle Scholar
  4. 4.
    Degruyter, W., Burgisser, A., Bachmann, O., Malaspinas, O.: Synchrotron X-ray microtomography and lattice Boltzmann simulations of gas flow through volcanic pumices. Geosphere 6(5), 470–481 (2010)CrossRefGoogle Scholar
  5. 5.
    Blazewicz, M., Kurowski, K., Ludwiczak, B., Napierala, K.: High performance computing on new accelerated hardware architectures. Computational Methods in Science and Technology Special Issue SEMI-ANNUAL. 71–79 (2010)Google Scholar
  6. 6.
    Piotrowski, Z.P., Kurowski, M.J., Rosa, B., Ziemianski, M.Z.: EULAG Model for Multiscale Flows – Towards the Petascale Generation of Mesoscale Numerical Weather Prediction. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2009, Part II. LNCS, vol. 6068, pp. 380–387. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Kurowski, K., Kulczewski, M., Dobski, M.: Parallel and GPU Based Strategies for Selected CFD and Climate Modeling Models. Information Technologies in Environmental Engineering 3(8), 735–747 (2011)CrossRefGoogle Scholar
  8. 8.
    Kopta, P., Kulczewski, M., Kurowski, K., Piontek, T., Gepner, P., Puchalski, M., Komasa, J.: Parallel application benchmarks and performance evaluation of the Intel Xeon 7500 family processors. Procedia Computer Science 4, 372–381 (2011)CrossRefGoogle Scholar
  9. 9.
    White, A.T., Chong, C.K.: Rotational invariance in the three-dimensional lattice Boltzmann method is dependent on the choice of lattice. Journal of Computational Physics 230(16), 6367–6378 (2011)CrossRefzbMATHGoogle Scholar
  10. 10.
    Parmigiani, A.: Lattice Boltzmann Calculations of Reactive Multiphase Flows in Porous Media. Universite de Geneve (2011)Google Scholar
  11. 11.
    Parmigiani, A., Huber, C., Bachmann, O., Bastien, C.: Porescale mass and reactant transport in multiphase porous media flows. Journal of Fluid Mechanics 686, 40–76 (2011)CrossRefzbMATHGoogle Scholar
  12. 12.
    Duda, A., Koza, Z., Matyka, M.: Hydraulic tortuosity in arbitrary porous media flow. Phys. Rev. E. 84(3), 36319 (2011)CrossRefGoogle Scholar
  13. 13.
    Xu, H., Malaspinas, O., Sagaut, P.: Sensitivity analysis and determination of free relaxation parameters for the weakly-compressible MRT - LBM schemes. Journal of Computational Physics 231(21), 7335–7367 (2012)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Domitner, J., Holzl, C., Kharicha, A., Wu, M., Ludwig, A., Kohler, M., Ratke, L.: 3D simulation of interdendritic flow through a Al-18wt-Cu structure captured with X-ray microtomography. IOP Conference Series: Materials Science and Engineering 27(1), 12–16 (2012)Google Scholar
  15. 15.
    Lagrava, D., Malaspinas, O., Latt, J., Chopard, B.: Advances in multi-domain lattice Boltzmann grid refinement. Journal of Computational Physics 231(14), 4808–4822 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Palabos LBM Wiki, http://wiki.palabos.org/
  17. 17.
    Malaspinas, O., Sagaud, P.: Consistent subgrid scale modelling for lattice Boltzmann method. Journal of Fluid Mechanics 700, 514–542 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Bielecki, J., Bozek, S., Dutkiewicz, E., Hajduk, R., Jarzyna, J., Lekki, J., Pieprzyca, T., Stachura, Z., Szklarz, Z., Kwiatek, W.M.: Preliminary Investigations of Elemental Content, Microporosity, and Specific Surface Area of Porous Rocks Using PIXE and X-ray Microtomography Techniques. Acta Physica Polonica A 121(2), 474–476 (2012)Google Scholar
  19. 19.
    Wittmann, M., Zeiser, T., Hager, G., Wellein, G.: Comparison of different propagation steps for lattice Boltzmann methods. Computers, Mathematics with Applications 65(6), 924–935 (2012)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Malaspinas, O., Sagaud, P.: Consistent subgrid scale modelling for lattice Boltzmann method. Journal of Fluid Mechanics 700, 514–542 (2012)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Min Tian
    • 1
    • 2
  • Weidong Gu
    • 1
    • 2
  • Jingshan Pan
    • 2
  • Meng Guo
    • 1
  1. 1.Shandong Provincial Key Laboratory of Computer NetworkShandong Computer Science CenterJinanP.R. China
  2. 2.Jinan High-tech. Development ZoneNational Supercomputer Center in JinanJinanP.R. China

Personalised recommendations