Discrete Rigid Transformation Graph Search for 2D Image Registration

  • Phuc Ngo
  • Akihiro Sugimoto
  • Yukiko Kenmochi
  • Nicolas Passat
  • Hugues Talbot
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8334)


Rigid image registration is an essential image processing task, with a large body of applications. This problem is usually formulated in the continuous domain, often in the context of an optimization framework. This approach leads to sometimes unwanted artifacts, e.g. due to interpolation. In the case of purely discrete applications, e.g., for template-based segmentation or classification, it is however preferable to avoid digitizing the result again after transformation. In this article, we deal with this point of view in the 2D case. Based on a fully discrete framework, we explicitly explore the parameter space of rigid transformations. This exploration leads to a local search scheme that can be involved in combinatorial optimization strategies.


Rigid registration digital image combinatorial optimisation on graph parameter space subdivision 


  1. 1.
    Hajnal, J.V., Hill, D.L.G., Hawkes, D.J.: Medical Image Registration. CRC Press (2001)Google Scholar
  2. 2.
    Schowengerdt, R.A.: Remote Sensing: Models and Methods for Image Processing, 3rd edn. Elsevier Academic Press (2007)Google Scholar
  3. 3.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Computing Surveys 38(4), 1–45 (2006)CrossRefGoogle Scholar
  4. 4.
    Zitová, B., Flusser, J.: Image registration methods: A survey. Image and Vision Computing 21(11), 977–1000 (2003)CrossRefGoogle Scholar
  5. 5.
    Bazin, P.-L., Pham, D.L.: Topology-preserving tissue classification of magnetic resonance brain images. IEEE Transactions on Medical Imaging 26(4), 487–496 (2007)CrossRefGoogle Scholar
  6. 6.
    Faisan, S., Passat, N., Noblet, V., Chabrier, R., Meyer, C.: Topology preserving warping of 3-D binary images according to continuous one-to-one mappings. IEEE Transactions on Image Processing 20(8), 2135–2145 (2011)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Combinatorial structure of rigid transformations in 2D digital images. Computer Vision and Image Understanding 117(4), 393–408 (2013)CrossRefGoogle Scholar
  8. 8.
    Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Combinatorial properties of 2D discrete rigid transformations under pixel-invariance constraints. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) IWCIA 2012. LNCS, vol. 7655, pp. 234–248. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Boykov, Y., Kolmogorov, V., Cremers, D., Delong, A.: An integral solution to surface evolution PDEs via geo-cuts. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 409–422. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Amintoosi, M., Fathy, M., Mozayani, N.: A fast image registration approach based on SIFT key-points applied to super-resolution. Imaging Science Journal 60(4), 185–201 (2011)CrossRefGoogle Scholar
  11. 11.
    Pedro, F.F., Daniel, P.H.: Distance transforms of sampled functions. Theory of Computing 8(19), 415–428 (2012)MathSciNetGoogle Scholar
  12. 12.
    Aarts, E., Lenstra, J.K.: Local Search in Combinatorial Optimization. John Wiley & Sons, Inc. (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Phuc Ngo
    • 1
    • 2
  • Akihiro Sugimoto
    • 1
  • Yukiko Kenmochi
    • 2
  • Nicolas Passat
    • 3
  • Hugues Talbot
    • 2
  1. 1.National Institute of InformaticsJapan
  2. 2.LIGMUniversité Paris-EstFrance
  3. 3.CReSTICUniversité de Reims Champagne-ArdenneFrance

Personalised recommendations