Local Affine Optical Flow Computation

  • Hayato Itoh
  • Shun Inagaki
  • Ming-Ying Fan
  • Atsushi Imiya
  • Kazuhiko Kawamoto
  • Tomoya Sakai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8334)


We develop an algorithm for the computation of a locally affine optical flow field as an extension of the Lucas-Kanade (LK) method. The classical LK method solves a system of linear equations assuming that the flow field is locally constant. Our method solves a collection of systems of linear equations assuming that the flow field is locally affine. Since our method combines the minimisation of the total variation and the decomposition of the region, the method is a local version of the \(l_2^2\)-l 1 optical flow computation. Since the linearly diverging vector field from a point is locally affine, our method is suitable for optical flow computation for diverging image sequences such as front-view sequences observed by car-mounted cameras.


Window Size Regularisation Parameter Temporal Derivative Window Area Endpoint Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bouguet, J.-Y.: Pyramidal implementation of the Lucas Kanade feature tracker description of the algorithm, Intel Corporation, Microprocessor Research Labs, OpenCV Documents (1999)Google Scholar
  2. 2.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: International Joint Conference on Artificial Intelligence, pp. 674–679 (1981)Google Scholar
  3. 3.
    Beauchemin, S.S., Barron, J.L.: The computation of optical flow. ACM Computing Surveys 27, 233–466 (1995)CrossRefGoogle Scholar
  4. 4.
    van de Weijer, J., Gevers, T.: Robust optical flow from photometric invariants. In: Proc. ICIP, pp. 1835–1838 (2004)Google Scholar
  5. 5.
    Shi, J., Tomasi, C.: Good features to track. In: Proc. CVPR 1994, pp. 593–600 (1994)Google Scholar
  6. 6.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–204 (1981)CrossRefGoogle Scholar
  7. 7.
    Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review 51, 34–81 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Bruhn, A., Weickert, J., Schnoerr, C.: Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. International Journal of Computer Vision Archive 61, 211–231 (2005)Google Scholar
  9. 9.
    Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L 1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optic flow computation with theoretically justified warping 67, 141–158 (2006)Google Scholar
  11. 11.
    Weickert, J., Schnoerr, C.: Variational optic flow computation with a spatio-temporal smoothness constraint. Journal of Mathematical Imaging and Vision 14, 245–255 (2001)CrossRefzbMATHGoogle Scholar
  12. 12.
    Shin, Y.-Y., Chang, O.-S., Xu, J.: Convergence of fixed point iteration for deblurring and denoising problem. Applied Mathematics and Computation 189, 1178–1185 (2007)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Chambolle, A.: An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20, 89–97 (2004)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hayato Itoh
    • 1
  • Shun Inagaki
    • 1
  • Ming-Ying Fan
    • 1
  • Atsushi Imiya
    • 2
  • Kazuhiko Kawamoto
    • 3
  • Tomoya Sakai
    • 4
  1. 1.School of Advanced Integration ScienceChiba UniversityJapan
  2. 2.Institute of Management and Information TechnologiesChiba UniversityJapan
  3. 3.Academic Link CenterChiba UniversityInage-kuJapan
  4. 4.Department of Computer and Information SciencesNagasaki UniversityBunkyo-choJapan

Personalised recommendations