Medical Image Segmentation Using Multi-level Set Partitioning with Topological Graph Prior

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8334)


In this paper, we propose an approach for multi-region segmentation based on a topological graph prior within a multi-level set (MLS) formulation. We consider topological graph prior information to evolve the contour based on a topological relationship presented via a graph relation. This novel method is capable of segmenting adjacent objects with very close gray level that would be difficult to segment correctly using standard methods. We describe our algorithm and show the graph prior technique to explain how it gives precise multi-region segmentation. We validate our algorithm with numerous abdominal and brain image databases and compare it to other multi-region segmentation methods to demonstrate its accuracy and computational efficiency.


Segmentation multi-region topological graph level set medical image 


  1. 1.
    Andrews, S., McIntosh, C., Hamarneh, G.: Convex multiregion probabilistic segmentation with shape prior in isometric log-ratio transformation space. In: ICCV, pp. 2096–2103 (2011)Google Scholar
  2. 2.
    Chan, T., Vese, L.: Active contours without edges. IEEE Transaction on Image Processing 10(2), 266–277 (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Rathke, F., Schmidt, S., Schnörr, C.: Order Preserving and Shape Prior Constrained Intra-retinal Layer Segmentation in Optical Coherence Tomography. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 370–377. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Li, B.N., Chui, C.K., Chang, S., Ong, S.H.: Integrating Spatial Fuzzy Clustering With Level Set Methods For Automated Medical Image Segmentation. ELSEVIER Computer in Biology and Medicine 41, 1–10 (2011)CrossRefGoogle Scholar
  5. 5.
    Suzuki, M., Linguraru, M.G., Summers, R.M., Okada, K.: Analyses of Missing Organs in Abdominal Multi-Organ Segmentation. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) Abdominal Imaging. LNCS, vol. 7029, pp. 256–263. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Shimizua, A., Ohnoa, R., Ikegamia, T., Kobatakea, H., Nawanob, S., Smutekc, D.: Segmentation of Multiple Organs in Non-Contrast 3D Abdominal CT Images. Int. J. CARS 2, 135–142 (2007)CrossRefGoogle Scholar
  7. 7.
    Linguraru, M.G., Pura, J.A., Chowdhury, A.S., Summers, R.M.: Multi-organ segmentation from multi-phase abdominal CT via 4D graphs using enhancement, shape and location optimization. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part III. LNCS, vol. 6363, pp. 89–96. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Kohlberger, T., Sofka, M., Zhang, J., Birkbeck, N., Wetzl, J., Kaftan, J., Declerck, J., Zhou, S.K.: Automatic Multi-organ Segmentation Using Learning-Based Segmentation and Level Set Optimization. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 338–345. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Okada, T., Linguraru, M.G., Yoshida, Y., Hori, M., Summers, R.M., Chen, Y.-W., Tomiyama, N., Sato, Y.: Abdominal Multi-Organ Segmentation of CT Images Based on Hierarchical Spatial Modeling of Organ Interrelations. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) Abdominal Imaging 2011. LNCS, vol. 7029, pp. 173–180. Springer, Heidelberg (2012)Google Scholar
  10. 10.
    Bazin, P.L., Pham, D.L.: Homeomorphic Brain Image Segmentation with Topological and Statistical Atlases. In: MICCAI 2007 (2007); Medical Image Analysis 12(5), 616-625 (2008)Google Scholar
  11. 11.
    Otsu, N.: A Threshold Selection Method from Gray-Level Histograms. IEEE Transaction on System, Man and Cybernetics 9, 62–66 (1979)CrossRefGoogle Scholar
  12. 12.
    Egenhofer, M., Herring, J.: Categorizing Binary Topological Relations between Regions, Lines and Points in Geographic Databases. Technical report, Dept. of Surveying Eng., Univ. of Maine (1991)Google Scholar
  13. 13.
    Mansouri, R., Mitiche, A., Vazquez, C.: Multiregion Competition: A Level Set Extension of Region Competition to Multiple Region Image Partitioning. Computer Vision and Image Understanding 101, 137–150 (2006)CrossRefGoogle Scholar
  14. 14.
    Vazquez, C., Mitiche, A., Ayed, I.B.: Image Segmentation as Regularized Clustering: A Fully Global Curve Evaluation Method. ICIP 5, 3467–3470 (2004)Google Scholar
  15. 15.
    Zhu, S.C., Yuille, A.: Region Competition: Unifying Snakes, Region Growing, and Bayes/mdl for Multiband Image segmentation. PAMI 18, 884–900 (1996)CrossRefGoogle Scholar
  16. 16.
    Majumdar, A.K., Bhattacharya, I., Saha, A.K.: An Object-Oriented Fuzzy Data Model for Similarity Detection in Image Databases. IEEE Trasaction on Knowledge and Data Engineering 14(5), 1186–1189 (2002)CrossRefGoogle Scholar
  17. 17.
    MedPix Medical Image Database (1999)Google Scholar
  18. 18.
    Snyder, W.E.: NC state university Image Analysis Laboratory Database (2002)Google Scholar
  19. 19.
    Cocosco, C.A., Kollokian, V., Kwan, R.K.-S., Evans, A.C.: BrainWeb: Online Interface to a 3D MRI Simulated Brain Database. NeuroImage 5, S425 (1997)Google Scholar
  20. 20.
    Zou, K.H., Warfield, S.K., Bharatha, A., Tempany, C.M.C., Kaus, M.R., Haker, S.J., Wells, W.M., Jolesz, F.A., Kikinis, R.: Statistical Validation of Image Segmentation Quality Based on a Spatial Overlap Index. Academic Radiology 11, 178–189 (2004)CrossRefGoogle Scholar
  21. 21.
    Alpert, S., Galun, M., Basri, R., Brandt, A.: Image Segmentation by Probabilistic Bottom-Up Aggregation and Cue Integration. PAMI 34(2), 315–327 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.HannoverGermany

Personalised recommendations