Urteilen und Entscheiden

  • Arndt Bröder
  • Benjamin E. Hilbig


Menschen müssen ständig unterschiedlichste Situationen beurteilen oder Entscheidungen treffen. Dabei können die Informationen mehr oder weniger eindeutig und die Folgen der Entscheidung mehr oder weniger schwerwiegend sein. Die Psychologie erforscht die Struktur von Urteilen und Entscheidungen sowie Einflussfaktoren und Prozesse, die sowohl „gute“ als auch „irrationale“ Urteile und Entscheidungen hervorbringen. Die empirische Erforschung des Urteilens und Entscheidens hat faszinierende Einblicke in die einzelnen Bestandteile des Entscheidens gewährt, zum Bespiel über typische Fehlleistungen, verwendete Strategien der Suche nach relevanter Information sowie über deren weitere Verarbeitung. Spannende Befunde und die daraus entwickelten psychologischen Theorien des Urteilens und Entscheidens werden in diesem Kapitel vorgestellt.

Schlüsselwörter: Urteilen; Entscheiden; Informationsverarbeitung; Rationalität; Heuristik; Täuschungen; Strategie


  1. Adelman, L. (1981). The influence of formal, substantive, and contextual task properties on the relative effectiveness of different forms of feedback in multiple-cue probability learning tasks. Organizational Behavior und Human Performance, 27, 423–442.CrossRefGoogle Scholar
  2. Allais, M. (1953). Le comportement de l’homme rationnel devant le risque: Critique des postulats et axioms de l’e’cole americaine [Rational man’s behavior in face of risk: Critique of the American School’s postulates and axioms]. Econometrica, 21, 503–546.CrossRefGoogle Scholar
  3. Alter, A. L., & Oppenheimer, D. M. (2009). Uniting the tribes of fluency to form a metacognitive nation. Personality and Social Psychology Review, 13, 219–235.PubMedCrossRefGoogle Scholar
  4. Balzer, W. K., Doherty, M. E., & O’Connor, R. (1989). Effects of cognitive feedback on performance. Psychological Bulletin, 106, 410–433.CrossRefGoogle Scholar
  5. Bar-Hillel, M. (1980). The base-rate fallacy in probability judgments. Acta Psychologica, 44, 211–233.CrossRefGoogle Scholar
  6. Barbey, A. K., & Sloman, S. A. (2007). Base-rate respect: From ecological rationality to dual processes. Behavioral und Brain Sciences, 30, 241–297.Google Scholar
  7. Baron, J. (2004). Normative models of judgment and decision making. In D. J. Koehler, & N. Harvey (Hrsg.), Blackwell handbook of judgment and decision making (S. 19–36). Malden: Blackwell Publishing.CrossRefGoogle Scholar
  8. Baron, J. (2008). Thinking and deciding (4. Aufl.). Cambridge, UK: Cambridge University Press.Google Scholar
  9. Barron, G., & Erev, I. (2003). Small feedback-based decisions and their limited correspondence to description-based decisions. Journal of Behavioral Decision Making, 16, 215–233.CrossRefGoogle Scholar
  10. Bazerman, M. H., & Gino, F. (2012). Behavioral ethics: Toward a deeper understanding of moral judgment and dishonesty. Annual Review of Law and Social Science, 8, 85–104.CrossRefGoogle Scholar
  11. Beach, L. R., & Mitchell, T. R. (1978). A contingency model for the selection of decision strategies. Academy of Management Review, 3, 439–449.Google Scholar
  12. Bechara, A., & Damasio, A. R. (2005). The somatic marker hypothesis: A neural theory of economic decision. Games and Economic Behavior, 52, 336–372.CrossRefGoogle Scholar
  13. Begg, I. M., Anas, A., & Farinacci, S. (1992). Dissociation of processes in belief: Source recollection, statement familiarity, and the illusion of truth. Journal of Experimental Psychology: General, 121, 446–458.CrossRefGoogle Scholar
  14. Bell, D. E. (1985). Disappointment in decision making under uncertainty. Operations Research, 33, 1–27.CrossRefGoogle Scholar
  15. Bergert, F. B., & Nosofsky, R. M. (2007). A response-time approach to comparing generalized rational and take-the-best models of decision making. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 107–129.PubMedGoogle Scholar
  16. Betsch, T., & Haberstroh, S. (Hrsg.). (2005). The routines of decision making. Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers.Google Scholar
  17. Betsch, T., Funke, J., & Plessner, H. (2011). Denken – Urteilen, Entscheiden, Problemlösen. Berlin: Springer.CrossRefGoogle Scholar
  18. Billings, R. S., & Marcus, S. A. (1983). Measures of compensatory and noncompensatory models of decision behavior: Process tracing versus policy capturing. Organizational Behavior und Human Performance, 31(3), 331–352.CrossRefGoogle Scholar
  19. Birnbaum, M. H. (2004). Causes of Allais common consequence paradoxes: An experimental dissection. Journal of Mathematical Psychology, 48, 87–106. doi:10.1016/ Scholar
  20. Birnbaum, M. H. (2008). Evaluation of the priority heuristic as a descriptive model of risky decision making: Comment on Brandstätter, Gigerenzer, and Hertwig (2006). Psychological Review, 115, 253–260. doi:10.1037/0033-295X.115.1.253.PubMedCrossRefGoogle Scholar
  21. Birnbaum, M. H. (2011). Testing mixture models of transitive preference: Comment on Regenwetter, Dana, and Davis-Stober (2011). Psychological Review, 118, 675–683.PubMedCrossRefGoogle Scholar
  22. Birnbaum, M. H., & Jou, J.-W. (1990). A theory of comparative response times and „difference“ judgments. Cognitive Psychology, 22, 184–210.CrossRefGoogle Scholar
  23. Blank, H., Musch, J., & Pohl, R. F. (2007). Hindsight bias: On being wise after the event. Social Cognition, 25, 1–9.CrossRefGoogle Scholar
  24. Brandstätter, E., Gigerenzer, G., & Hertwig, R. (2006). Making choices without trade-offs: The priority heuristic. Psychological Review, 113, 409–432. doi:10.1037/0033-295X.113.2.409.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Brehmer, B. (1980). In one word: Not from experience. Acta Psychologica, 45, 223–241.CrossRefGoogle Scholar
  26. Brehmer, B. (1994). The psychology of linear judgement models. Acta Psychologica, 87, 137–154.CrossRefGoogle Scholar
  27. Brehmer, A., & Brehmer, B. (1988). What have we learned about human judgment from thirty years of policy capturing? In B. Brehmer, & C. R. B. Joyce (Hrsg.), Human judgment: The SJT view (S. 75–114). Oxford, England: North-Holland.CrossRefGoogle Scholar
  28. Brehmer, B., & Joyce, C. R. B. (Hrsg.). (1988). Human judgment: The SJT view. Oxford, England: North-Holland.Google Scholar
  29. Bröder, A. (2000a). A methodological comment on behavioral decision research. Psychologische Beiträge, 42, 645–662.Google Scholar
  30. Bröder, A. (2000b). Assessing the empirical validity of the „Take-the-best“ heuristic as a model of human probabilistic inference. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(5), 1332–1346.PubMedGoogle Scholar
  31. Bröder, A. (2003). Decision making with the „adaptive toolbox“: Influence of environmental structure, intelligence, and working memory load. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 611–625.PubMedGoogle Scholar
  32. Bröder, A. (2005). Entscheiden mit der „adaptiven Werkzeugkiste“: Ein empirisches Forschungsprogramm. Lengerich: Pabst.Google Scholar
  33. Bröder, & Eichler, A. (2006). The use of recognition information and additional cues in inferences from memory. Acta Psychologica, 121, 275–284.PubMedCrossRefGoogle Scholar
  34. Bröder, A., & Gaissmaier, W. (2007). Sequential processing of cues in memory-based multiattribute decisions. Psychonomic Bulletin und Review, 14, 895–900.CrossRefGoogle Scholar
  35. Bröder, A., & Newell, B. R. (2008). Challenging some common beliefs: Empirical work within the adaptive toolbox metaphor. Judgment and Decision Making, 3, 205–214.Google Scholar
  36. Bröder, A., & Schiffer, S. (2003). Take The Best versus simultaneous feature matching: Probabilistic inferences from memory and effects of representation format. Journal of Experimental Psychology: General, 132, 277–293.CrossRefGoogle Scholar
  37. Bröder, A., & Schiffer, S. (2006). Adaptive flexibility and maladaptive routines in selecting fast and frugal decision strategies. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 904–918.PubMedGoogle Scholar
  38. Brunswik, E. (1952). The conceptual framework of psychology. (Int. Encycl. unified Sci., v. 1, no. 10.). Oxford, England: Univ. Chicago Press.Google Scholar
  39. Brunswik, E. (1955). Representative design and probabilistic theory in a functional psychology. Psychological Review, 62, 193–217.PubMedCrossRefGoogle Scholar
  40. Budescu, D. V., & Weiss, W. (1987). Reflection of transitive and intransitive preferences: A test of prospect theory. Organizational Behavior and Human Decision Processes, 39, 184–202.CrossRefGoogle Scholar
  41. Busemeyer, J. R., & Townsend, J. T. (1993). Decision field theory: A dynamic-cognitive approach to decision making in an uncertain environment. Psychological Review, 100, 432–459. doi:10.1037/0033-295X.100.3.432.PubMedCrossRefGoogle Scholar
  42. Camilleri, A. R., & Newell, B. R. (2011). When and why rare events are underweighted: A direct comparison of the sampling, partial feedback, full feedback and description choice paradigms. Psychonomic Bulletin und Review, 18, 377–384. doi:10.3758/s13423-010-0040-2.CrossRefGoogle Scholar
  43. Casscells, W., Schoenberger, A., & Graboys, T. B. (1978). Interpretation by physicians of clinical laboratory results. The New England Journal of Medicine, 299, 999–1001.PubMedCrossRefGoogle Scholar
  44. Castela, M., Kellen, D., Erdfelder, E., & Hilbig, B. E. (2014). The impact of subjective recognition experiences on recognition heuristic use: A multinomial processing tree approach. Psychonomic Bulletin und Review, 21, 1131–1138.CrossRefGoogle Scholar
  45. Chapman, G. B., & Johnson, E. J. (2002). Incorporating the irrelevant: Anchors in judgments of belief and value. In T. Gilovich, D. Griffin, & D. Kahneman (Hrsg.), Heuristics and biases: The psychology of intuitive judgment (S. 120–138). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  46. Chase, V. M., Hertwig, R., & Gigerenzer, G. (1998). Visions of rationality. Trends in Cognitive Sciences, 2, 206–214. doi:10.1016/S1364-6613%2898%2901179-6.PubMedCrossRefGoogle Scholar
  47. Christensen-Szalanski, J. J., & Willham, C. F. (1991). The hindsight bias: A meta-analysis. Organizational Behavior and Human Decision Processes, 48, 147–168.CrossRefGoogle Scholar
  48. Chu, P. C., & Spires, E. E. (2003). Perceptions of accuracy and effort of decision strategies. Organizational Behavior and Human Decision Processes, 91(2), 203–214.CrossRefGoogle Scholar
  49. Cohen, M., Jaffray, J.-Y., & Saϊd, T. (1987). Experimental comparison of individual behavior under risk and under uncertainty for gains and for losses. Organizational Behavior and Human Decision Processes, 39, 1–22.CrossRefGoogle Scholar
  50. Combs, B., & Slovic, P. (1979). Newspaper coverage of causes of death. Journalism Quarterly, 56, 837–849.CrossRefGoogle Scholar
  51. Czerlinski, J., Gigerenzer, G., & Goldstein, D. G. (1999). How good are simple heuristics? In Simple heuristics that make us smart (S. 97–118). New York, NY: Oxford University Press.Google Scholar
  52. Dawes, R. M. (2001). Everyday irrationality. How pseudo-scientists, lunatics, and the rest of us systematically fail to think rationally. Boulder, CO: Westview Press.Google Scholar
  53. Dawes, R. M., Faust, D., & Meehl, P. E. (1989). Clinical versus actuarial judgment. Science, 243, 1668–1674.PubMedCrossRefGoogle Scholar
  54. Dechêne, A., Stahl, C., Hansen, J., & Wänke, M. (2010). The truth about the truth: A meta-analytic review of the Truth Effect. Personality and Social Psychology Review, 14, 238–257.PubMedCrossRefGoogle Scholar
  55. Dougherty, M. R., Franco-Watkins, A. M., & Thomas, R. (2008). Psychological plausibility of the theory of Probabilistic Mental Models and the Fast and Frugal Heuristics. Psychological Review, 115, 199–213.PubMedCrossRefGoogle Scholar
  56. Eddy, D. M. (1982). Probabilistic reasoning in clinical medicine: Problems and opportunities. In D. Kahneman, & P. Slovic Tversky et al. (Hrsg.), Judgment under uncertainty: Heuristics and biases (S. 249–267). New York: Cambridge University Press.CrossRefGoogle Scholar
  57. Edwards, W. (1954). The theory of decision making. Psychological Bulletin, 51(4), 380–417.PubMedCrossRefGoogle Scholar
  58. Einhorn, H. J., Kleinmuntz, D. N., & Kleinmuntz, B. (1979). Linear regression and process-tracing models of judgment. Psychological Review, 86, 465–485.CrossRefGoogle Scholar
  59. Eisenführ, F., Weber, M., & Langer, T. (2010). Rational Decision Making. Berlin, London: Springer.CrossRefGoogle Scholar
  60. Erdfelder, E., Küpper-Tetzel, C. E., & Mattern, S. D. (2011). Threshold models of recognition and the recognition heuristic. Judgment and Decision Making, 6, 7–22.Google Scholar
  61. Ettlin, F., Bröder, A. und Henninger, M. (2015). A new task format for investigating information search and organization in multi-attribute decisions. Behavior Research Methods. 47, 506–518. Google Scholar
  62. Evans, J. S. B. T. (2008). Dual-processing accounts of reasoning, judgment, and social cognition. Annual Review of Psychology, 59, 255–278.PubMedCrossRefGoogle Scholar
  63. Fechner, G. T. (1860). Elemente der Psychophysik. Leipzig: Duncker und Humblot.Google Scholar
  64. Fiedler, K. (1988). The dependence of the conjunction fallacy on subtle linguistic factors. Psychological Research, 50, 123–129.CrossRefGoogle Scholar
  65. Fiedler, K. (1993). Kognitive Täuschungen: Faszination eines modernen Forschungsprogramms. In W. Hell, K. Fiedler, & G. Gigenzer (Hrsg.), Kognitive Täuschungen. Fehl-Leistungen und Mechanismen des Urteilens, Denkens und Erinnerns (S. 7–12). Heidelberg: Spektrum Akademischer Verlag.Google Scholar
  66. Fiedler, K. (2000). Beware of samples! A cognitive-ecological sampling approach to judgment biases. Psychological Review, 107, 659–676.PubMedCrossRefGoogle Scholar
  67. Fiedler, K. (2010). How to study cognitive decision algorithms: The case of the priority heuristic. Judgment and Decision Making, 5, 21–32.Google Scholar
  68. Fiedler, K., & Walka, I. (1993). Training lie detectors to use nonverbal cues instead of global heuristics. Human Communication Research, 20(2), 199–223.CrossRefGoogle Scholar
  69. Fischhoff, B. (1975). Hindsight is not equal to foresight: The effect of outcome knowledge on judgment under uncertainty. Journal of Experimental Psychology: Human Perception and Performance, 1, 288–299.Google Scholar
  70. Galesic, M., Garcia-Retamero, R., & Gigerenzer, G. (2009). Using icon arrays to communicate medical risks: Overcoming low numeracy. Health Psychology, 28, 210–216.PubMedCrossRefGoogle Scholar
  71. Gigerenzer, G. (1991). How to make cognitive illusions disappear: Beyond „heuristics and biases“. In W. Stroebe, & M. Hewstone (Hrsg.), European Review of Social Psychology (Bd. 2, S. 83–115). Chichester: Wiley.Google Scholar
  72. Gigerenzer, G. (1996). On narrow norms and vague heuristics: A reply to Kahneman and Tversky. Psychological Review, 103, 592–596.CrossRefGoogle Scholar
  73. Gigerenzer, G., & Edwards, A. (2003). Simple tools for understanding risks: From innumeracy to insight. British Medical Journal, 327, 741–744.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast and frugal way: Models of bounded rationality. Psychological Review, 103, 650–669.PubMedCrossRefGoogle Scholar
  75. Gigerenzer, G., & Goldstein, D. G. (2011). The recognition heuristic: A decade of research. Judgment and Decision Making, 6, 100–121.Google Scholar
  76. Gigerenzer, G., & Hoffrage, U. (1995). How to improve Bayesian reasoning without instruction: Frequency formats. Psychological Review, 102, 684–704.CrossRefGoogle Scholar
  77. Gigerenzer, G., Todd, P. M., & Todd (1999). Simple heuristics that make us smart. New York, NY: Oxford University Press.Google Scholar
  78. Gilovich, T., Vallone, R., & Tversky, A. (1985). The hot hand in basketball: On the misperception of random sequences. Cognitive Psychology, 17, 295–314.CrossRefGoogle Scholar
  79. Gilovich, T., Griffin, D., & Kahneman, D. (Hrsg.). (2002). Heuristics and biases: The psychology of intuitive judgment. Cambridge, UK: Cambridge University Press.Google Scholar
  80. Glöckner, A., & Betsch, T. (2008a). Do people make decisions under risk based on ignorance? An empirical test of the priority heuristic against cumulative prospect theory. Organizational Behavior and Human Decision Processes, 107, 75–95.CrossRefGoogle Scholar
  81. Glöckner, A., & Betsch, T. (2008b). Modeling option and strategy choices with connectionist networks: Towards an integrative model of automatic and deliberate decision making. Judgment and Decision Making, 3, 215–228.Google Scholar
  82. Glöckner, A., & Betsch, T. (2008c). Multiple-reason decision making based on automatic processing. Journal of Experimental Psychology: Learning, Memory, und Cognition, 34, 1055–1075.Google Scholar
  83. Glöckner, A., & Betsch, T. (2012). Decisions beyond boundaries: When more information is processed faster than less. Acta Psychologica, 139, 532–542.PubMedCrossRefGoogle Scholar
  84. Glöckner, & Bröder, A. (2014). Cognitive integration of recognition information and additional cues in memory-based decisions. Judgment and Decision Making, 9(1), 35–50.Google Scholar
  85. Glöckner, A., Hilbig, B. E., Henninger, F, & Fiedler, S. (2016). The reversed Description-Experience gap: disentangling sources of presentation format effects in risky choice. Journal of Experimental Psychology: General, 145, 486–508.Google Scholar
  86. Glöckner, A., & Witteman, C. (2010). Beyond dual-process models: A categorisation of processes underlying intuitive judgement and decision making. Thinking und Reasoning, 16, 1–25.CrossRefGoogle Scholar
  87. Glöckner, A., Betsch, T., & Shindler, N. (2010). Coherence shifts in probabilistic inference tasks. Journal of Behavioral Decision Making, 23, 439–462.CrossRefGoogle Scholar
  88. Glöckner, A., Hilbig, B. E., & Jekel, M. (2014). What is adaptive about adaptive decision making? A parallel constraint satisfaction account. Cognition, 133, 641–666.PubMedCrossRefGoogle Scholar
  89. Gluck, M. A., & Bower, G. H. (1988). Evaluating an adaptive network model of human learning. Journal of Memory and Language, 27(2), 166–195.CrossRefGoogle Scholar
  90. Goldstein, D. G., & Gigerenzer, G. (2002). Models of ecological rationality: The recognition heuristic. Psychological Review, 109, 75–90.PubMedCrossRefGoogle Scholar
  91. Goldstein, W. M., & Hogarth, R. M. (1997). Judgment and decision research: Some historical context. In W. M. Goldstein, & R. M. Hogarth (Hrsg.), Research on judgment and decision making: Currents, connections, and controversies (S. 3–65). New York, NY US: Cambridge University Press.Google Scholar
  92. Greifeneder, R., Bless, H., & Pham, M. T. (2011). When do people rely on affective and cognitive feelings in judgment? A review. Personality and Social Psychology Review, 15, 107–141. doi:10.1177/1088868310367640.PubMedCrossRefGoogle Scholar
  93. Grove, W. M., Zald, D. H., Lebow, B. S., Snitz, B. E., & Nelson, C. (2000). Clinical versus mechanical prediction: A meta-analysis. Psychological Assessment, 12, 19–30.PubMedCrossRefGoogle Scholar
  94. Hagmayer, Y. (2010). Investigating causal intuitions. In A. Glöckner, & C. Witteman (Hrsg.), Foundations for tracing intuition: Challenges and methods (S. 160–178). New York, NY, US: Psychology Press.Google Scholar
  95. Hahn, U., Prat-Sala, M., Pothos, E. M., & Brumby, D. P. (2010). Exemplar similarity and rule application. Cognition, 114, 1–18.PubMedCrossRefGoogle Scholar
  96. Hall, G. C. N. (1988). Criminal behavior as a function of clinical and actuarial variables in a sexual offender population. Journal of Consulting and Clinical Psychology, 56, 773–775.PubMedCrossRefGoogle Scholar
  97. Hammond, K. R. (1955). Probabilistic functioning and the clinical method. Psychological Review, 62, 255–262.PubMedCrossRefGoogle Scholar
  98. Hammond, K. R., Hursch, C. J., & Todd, F. J. (1964). Analyzing the components of clinical inference. Psychological Review, 71(6), 438–456.PubMedCrossRefGoogle Scholar
  99. Hammond, P. J. (1997). Rationality in economics. Rivista Internazionale di Scienze Sociali, 105, 247–288.Google Scholar
  100. Hardman, D. (2009). Judgment and decision making: Psychological perspectives. Blackwell Publishing: Malden, Leicester, England.Google Scholar
  101. Hastie, R., & Dawes, R. M. (2001). Rational choice in an uncertain world: The psychology of judgment and decision making. Thousand Oaks, CA US: Sage Publications.Google Scholar
  102. Hausmann, & Läge, D. (2008). Sequential evidence accumulation in decision making: The individual desired level of confidence can explain the extent of information acquisition. Judgment and Decision Making, 3, 229–243.Google Scholar
  103. Hausmann, D., Läge, D., Pohl, R. F., & Bröder, A. (2007). Testing quickEst: No evidence for the quick-estimation heuristic. European Journal of Cognitive Psychology, 19, 446–456.CrossRefGoogle Scholar
  104. Helversen, B. von, & Rieskamp, J. (2008). The mapping model: A cognitive theory of quantitative estimation. Journal of Experimental Psychology: General, 137, 73–96.CrossRefGoogle Scholar
  105. Helversen, B. von, Herzog, S. M., & Rieskamp, J. (2014). Haunted by a doppelgänger: Irrelevant facial similarity affects rule-based judgments. Experimental Psychology, 61, 12–22.CrossRefGoogle Scholar
  106. Hertwig, R., & Gigerenzer, G. (1999). The conjunction fallacy revisited: How intelligent inferences look like reasoning errors. Journal of Behavioral Decision Making, 12, 275–306.CrossRefGoogle Scholar
  107. Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2004). Decisions from experience and the effect of rare events in Risky Choice. Psychological Science, 15, 534–539.PubMedCrossRefGoogle Scholar
  108. Hertwig, R., Benz, B., & Krauss, S. (2008a). The conjunction fallacy and the many meanings of and. Cognition, 108, 740–753.PubMedCrossRefGoogle Scholar
  109. Hertwig, R., Herzog, S. M., Schooler, L. J., & Reimer, T. (2008b). Fluency Heuristic: A model of how the mind exploits a by-product of information retrieval. Journal of Experimental Psychology: Learning, Memory, und Cognition, 34, 1191–1206.Google Scholar
  110. Herzog, S. M., & Hertwig, R. (2013). The ecological validity of fluency. In C. Unkelbach, & R. Greifeneder (Hrsg.), The experience of thinking: How feelings from mental processes influence cognition and behavior (S. 190–219). London: Psychology Press.Google Scholar
  111. Hilbig, B. E. (2008). One-reason decision making in risky choice? A closer look at the priority heuristic. Judgment and Decision Making, 3, 457–462.Google Scholar
  112. Hilbig, B. E. (2010). Reconsidering „evidence“ for fast-and-frugal heuristics. Psychonomic Bulletin und Review, 17, 923–930.CrossRefGoogle Scholar
  113. Hilbig, B. E., & Glöckner, A. (2011). Yes, they can! Appropriate weighting of small probabilities as a function of information acquisition. Acta Psychologica, 138, 390–396.PubMedCrossRefGoogle Scholar
  114. Hilbig, B. E., & Moshagen, M. (2014). Generalized outcome-based strategy classification: Comparing deterministic and probabilistic choice models. Psychonomic Bulletin und Review, 21, 1431–1443.CrossRefGoogle Scholar
  115. Hilbig, B. E., & Pohl, R. F. (2008). Recognizing users of the recognition heuristic. Experimental Psychology, 55, 394–401.PubMedCrossRefGoogle Scholar
  116. Hilbig, B. E., & Pohl, R. F. (2009). Ignorance- versus evidence-based decision making: A decision time analysis of the recognition heuristic. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 1296–1305. doi:10.1037/a0016565.PubMedGoogle Scholar
  117. Hilbig, B. E., & Richter, T. (2011). Homo heuristicus outnumbered: Comment on Gigerenzer and Brighton (2009). Topics in Cognitive Science, 3, 187–196.PubMedCrossRefGoogle Scholar
  118. Hilbig, B. E., Erdfelder, E., & Pohl, R. F. (2010). One-reason decision-making unveiled: A measurement model of the recognition heuristic. Journal of Experimental Psychology: Learning, Memory, und Cognition, 36, 123–134.Google Scholar
  119. Hilbig, B. E., Erdfelder, E., & Pohl, R. F. (2011). Fluent, fast, and frugal? A formal model evaluation of the interplay between memory, fluency, and comparative judgments. Journal of Experimental Psychology: Learning, Memory, und Cognition, 37, 827–839.Google Scholar
  120. Hilbig, B. E., Erdfelder, E., & Pohl, R. F. (2012). A matter of time: Antecedents of one-reason decision making based on recognition. Acta Psychologica, 141, 9–16.PubMedCrossRefGoogle Scholar
  121. Hoffman, P. J. (1960). The paramorphic representation of clinical judgment. Psychological Bulletin, 57, 116–131.PubMedCrossRefGoogle Scholar
  122. Hoffmann, J. A., Helversen, B. von, & Rieskamp, J. (2014). Pillars of judgment: How memory abilities affect performance in rule-based and exemplar-based judgments. Journal of Experimental Psychology: General, 143, 2242–2261.CrossRefGoogle Scholar
  123. Hoffrage, U., & Gigerenzer, G. (1998). Using natural frequencies to improve diagnostic inferences. Academic Medicine, 73, 538–540.PubMedCrossRefGoogle Scholar
  124. Hogarth, R. M. (2001). Educating intuition. Chicago, IL US: University of Chicago Press.Google Scholar
  125. Hogarth, R. M., & Karelaia, N. (2007). Heuristic and linear models of judgment: Matching rules and environments. Psychological Review, 114, 733–758.PubMedCrossRefGoogle Scholar
  126. Hohleiter, V. (2014). Fährunglück vor Südkorea – Taucher bergen mehr als 100 Leichen aus gesunkener Fähre. Tagesspiegel. Zugegriffen: 22. April 2014Google Scholar
  127. Hsee, C. (1996). The evaluability hypothesis: An explanation for preference reversals between joint and separate evaluations of alternatives. Organizational Behavior and Human Decision Processes, 67(3), 247–257.CrossRefGoogle Scholar
  128. Huber, J., Payne, J. W., & Puto, C. (1982). Adding asymmetrically dominated alternatives: Violations of regularity and the similarity hypothesis. Journal of Consumer Research, 9(1), 90–98.CrossRefGoogle Scholar
  129. Huber, O. (1980). The influence of some task variables on cognitive operations in an information-processing decision model. Acta Psychologica, 45, 187–196.CrossRefGoogle Scholar
  130. Huber, O. (1982). Entscheiden als Problemlösen. Bern: Huber.Google Scholar
  131. Jahn, G., Renkewitz, F., & Kunze, S. (2007). Heuristics in multi-attribute decision making: Effects of representation format. In D. S. McNamara, & G. Trafton (Hrsg.), Proceedings of the Twenty-Ninth Annual Conference of the Cognitive Science Society (S. 383–388). Mawah, NJ: Erlbaum.Google Scholar
  132. Jensen, N. E. (1967). An introduction to Bernoullian utility theory: I. Utility functions. The Swedish Journal of Economics, 69, 163–183.CrossRefGoogle Scholar
  133. Jerger, J. (1992). Das St. Petersburg-Paradoxon. WiSt-Wirtschaftswissenschaftliches Studium. (S. 407–410).Google Scholar
  134. Johnson, E. J., & Goldstein, D. (2003). Do defaults save lives? Science, 302(5649), 1338–1339.PubMedCrossRefGoogle Scholar
  135. Johnson, E. J., & Payne, J. W. (1985). Effort and accuracy in choice. Management Science, 31, 395–414.CrossRefGoogle Scholar
  136. Juslin, P., & Persson, M. (2002). PROBabilities from EXemplars (PROBEX): A „lazy“ algorithm for probabilistic inference from generic knowledge. Cognitive Science, 26(5), 563–607.CrossRefGoogle Scholar
  137. Juslin, P., Olsson, H., & Olsson, A.-C. (2003). Exemplar effects in categorization and multiple-cue judgment. Journal of Experimental Psychology: General, 132, 133–156.CrossRefGoogle Scholar
  138. Kahneman, D., & Frederick, S. (2004). Attribute substitution in intuitive judgment. In M. Augier, & J. G. March (Hrsg.), Models of a man: Essays in memory of Herbert A. Simon (S. 411–432). Cambridge, MA: MIT Press.Google Scholar
  139. Kahneman, D., & Tversky, A. (1972a). On prediction and judgment. ORI Research Monographs, 12, 430–454.Google Scholar
  140. Kahneman, D., & Tversky, A. (1972b). Subjective probability: A judgment of representativeness. Cognitive Psychology, 3, 430–454.CrossRefGoogle Scholar
  141. Kahneman, D., & Tversky, A. (1973). On the psychology of prediction. Psychological Review, 80, 237–251.CrossRefGoogle Scholar
  142. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263–292.CrossRefGoogle Scholar
  143. Kahneman, D., & Tversky, A. (1996). On the reality of cognitive illusions. Psychological Review, 103, 582–591. doi:10.1037/0033-295X.103.3.582.PubMedCrossRefGoogle Scholar
  144. Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgment under uncertainty: Heuristics and biases. New York: Cambridge University Press.CrossRefGoogle Scholar
  145. Kahneman, D., Knetsch, J. L., & Thaler, R. H. (1990). Experimental tests of the endowment effect and the Coase theorem. Journal of Political Economy, 98, 1325–1348.CrossRefGoogle Scholar
  146. Kahneman, D., Knetsch, J. L., & Thaler, R. H. (1991). Anomalies: The endowment effect, loss aversion, and status-quo bias. Journal of Economic Perspectives, 5(1), 193–206.CrossRefGoogle Scholar
  147. Karelaia, N., & Hogarth, R. M. (2008). Determinants of linear judgment: A meta-analysis of lens model studies. Psychological Bulletin, 134, 404–426. doi:10.1037/0033-2909.134.3.404.PubMedCrossRefGoogle Scholar
  148. Karlsson, L., Juslin, P., & Olsson, H. (2008). Exemplar-based inference in multi-attribute decision making: Contingent, not automatic, strategy shifts? Judgment and Decision Making, 3, 244–260.Google Scholar
  149. Kaufmann, E., Reips, U.-D., & Wittmann, W. (2013). A critical meta-analysis of lens model studies in human judgment and decision-making. PLoS ONE, 8(12), e83528.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Khader, P. H., Pachur, T., Meier, S., Bien, S., Jost, K., & Rösler, F. (2011). Memory-based decision-making with heuristics: Evidence for a controlled activation of memory representations. Journal of Cognitive Neuroscience, 23, 3540–3554.PubMedCrossRefGoogle Scholar
  151. Khader, P. H., Pachur, T., & Jost, K. (2013). Automatic activation of attribute knowledge in heuristic inference from memory. Psychonomic Bulletin und Review, 20, 372–377.CrossRefGoogle Scholar
  152. Klayman, J. (1988). Cue discovery in probabilistic environments: Uncertainty and experimentation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14(2), 317–330.Google Scholar
  153. Klein, G. (2008). Naturalistic decision making. Human Factors, 50, 456–460.PubMedCrossRefGoogle Scholar
  154. Knowlton, B. J., Squire, L. R., & Gluck, M. A. (1994). Probabilistic classification learning in amnesia. Learning und Memory, 1, 106–120.Google Scholar
  155. Koehler, J. J. (1996). The base rate fallacy reconsidered: Descriptive, normative, and methodological challenges. Behavioral und Brain Sciences, 19, 1–53.CrossRefGoogle Scholar
  156. Koop, G. J., & Johnson, J. G. (2013). The response dynamics of preferential choice. Cognitive Psychology, 67, 151–185.PubMedCrossRefGoogle Scholar
  157. Krajbich, I., & Rangel, A. (2011). Multialternative drift-diffusion model predicts the relationship between visual fixations and choice in value-based decisions. Proceedings of the National Academy of Sciences, 108, 13852–13857.CrossRefGoogle Scholar
  158. Krajbich, I., Armel, C., & Rangel, A. (2010). Visual fixations and the computation and comparison of value in simple choice. Nature Neuroscience, 13, 1292–1298.PubMedCrossRefGoogle Scholar
  159. Lagnado, D. A., & Sloman, S. (2004). The advantage of timely intervention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(4), 856–876.PubMedGoogle Scholar
  160. Lee, M. D., & Cummins, T. D. (2004). Evidence accumulation in decision making: Unifying the „take the best“ and the „rational“ models. Psychonomic Bulletin und Review, 11, 343–352.CrossRefGoogle Scholar
  161. Lichtenstein, S., & Slovic, P. (1971). Reversals of preference between bids and choices in gambling decisions. Journal of Experimental Psychology, 89(1), 46–55.CrossRefGoogle Scholar
  162. Lichtenstein, S., Slovic, P., Fischhoff, B., Layman, M., & Combs, B. (1978). Judged frequency of lethal events. Journal of Experimental Psychology: Human Learning and Memory, 4, 551–578.Google Scholar
  163. List, J. A. (2002). Preference reversals of a different kind: The „more is less“ phenomenon. American Economic Review, 92(5), 1636–1643.CrossRefGoogle Scholar
  164. Locke, J. (1997). An Essay Concerning Human Understanding. London: Penguin Classics. 1690, revised editionGoogle Scholar
  165. Loomes, G., & Sugden, R. (1986). Disappointment and dynamic consistency in choice under uncertainty. Review of Economic Studies, 53, 271–282.CrossRefGoogle Scholar
  166. Loomes, G., & Sugden, R. (1987). Testing for regret and disappointment in choice under uncertainty. The Economic Journal, 97, 118–129.CrossRefGoogle Scholar
  167. Loomes, G., & Sugden, R. (1998). Testing different stochastic specifications of Risky Choice. Economica, 65, 581–598.CrossRefGoogle Scholar
  168. Loomes, G., Starmer, C., & Sugden, R. (1991). Observing violations of transitivity by experimental methods. Econometrica, 59, 425–439. doi:10.2307/2938263.CrossRefGoogle Scholar
  169. MacCrimmon, K. R., & Larsson, S. (1979). Utility theory: Axioms versus ‘paradoxes. In M. Allais, & O. Hagen (Hrsg.), Expected utility and the Allais paradox (S. 333–409). Dordrecht: NL: Reidel Publishing.CrossRefGoogle Scholar
  170. Martignon, L., & Hoffrage, U. (2002). Fast, frugal, and fit: Simple heuristics for paired comparison. Theory and Decision, 52, 29–71.CrossRefGoogle Scholar
  171. Mata, R., Schooler, L. J., & Rieskamp, J. (2007). The aging decision maker: Cognitive aging and the adaptive selection of decision strategies. Psychology and Aging, 22(4), 796–810.PubMedCrossRefGoogle Scholar
  172. McClelland, A. G. R., & Bolger, F. (1994). The calibration of subjective probability: Theories and models 1980–94. In G. Wright, & P. Ayton (Hrsg.), Subjective probability (S. 453–482). Oxford, England: John Wiley und Sons.Google Scholar
  173. Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. Psychological Review, 85, 207–238.CrossRefGoogle Scholar
  174. Meehl, P. E. (1954). Clinical versus statistical prediction: A theoretical analysis and a review of the evidence. Minneapolis, MN, US: University of Minnesota Press.CrossRefGoogle Scholar
  175. Mellers, B. A., & Biagini, K. (1994). Similarity and choice. Psychological Review, 101, 505–518.CrossRefGoogle Scholar
  176. Mellers, B. A., Schwartz, A., Ho, K., & Ritov, I. (1997). Decision affect theory: Emotional reactions to the outcomes of risky options. Psychological Science, 8, 423–429.CrossRefGoogle Scholar
  177. Mellers, B., Hertwig, R., & Kahneman, D. (2001). Do frequency representations eliminate conjunction effects? An exercise in adversarial collaboration. Psychological Science, 12, 269–275.PubMedCrossRefGoogle Scholar
  178. Messer, W. S., & Griggs, R. A. (1993). Another look at Linda. Bulletin of the Psychonomic Society, 31, 193–196.CrossRefGoogle Scholar
  179. Miller, P. M. (1971). Do labels mislead? A multiple cue study, within the framework of brunswik’s probabilistic functionalism. Organizational Behavior and Human Performance, 6, 480–500. doi:10.1016/0030-5073(71)90029-8.CrossRefGoogle Scholar
  180. Moyer, R. S., & Bayer, R. H. (1976). Mental comparison and the symbolic distance effect. Cognitive Psychology, 8, 228–246. doi:10.1016/0010-0285(76)90025-6.CrossRefGoogle Scholar
  181. Muchinsky, P. M., & Dudycha, A. L. (1975). Human inference behavior in abstract and meaningful environments. Organizational Behavior und Human Performance, 13(3), 377–391.CrossRefGoogle Scholar
  182. Mussweiler, T., Englich, B., & Strack, F. (2004). Anchoring effect. In Cognitive illusions: A handbook on fallacies and biases in thinking, judgement and memory (S. 183–200). Hove, UK: Psychology Press.Google Scholar
  183. Neumann, J. von, & Morgenstern, O. (1947). Theory of games and economic behavior. Princeton, NJ: Princeton University Press.Google Scholar
  184. Newell, B. R. (2005). Re-visions of rationality? Trends in Cognitive Sciences, 9, 11–15. doi:10.1016/j.tics.2004.11.005.PubMedCrossRefGoogle Scholar
  185. Newell, B. R., & Fernandez, D. (2006). On the binary quality of recognition and the inconsequentially of further knowledge: Two critical tests of the recognition heuristic. Journal of Behavioral Decision Making, 19, 333–346.CrossRefGoogle Scholar
  186. Newell, B. R., & Shanks, D. R. (2003). Take the best or look at the rest? Factors influencing „one-reason“ decision making. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 53–65.PubMedGoogle Scholar
  187. Newell, B. R., Lagnado, D. A., & Shanks, D. R. (2007a). Straight choices: The psychology of decision making. New York, NY: Psychology Press.Google Scholar
  188. Newell, B. R., Lagnado, D. A., & Shanks, D. R. (2007b). Challenging the role of implicit processes in probabilistic category learning. Psychonomic Bulletin und Review, 14, 505–511.CrossRefGoogle Scholar
  189. Onken, J., Hastie, R., & Revelle, W. (1985). Individual differences in the use of simplification strategies in a complex decision-making task. Journal of Experimental Psychology. Human Perception and Performance, 11(1), 14–27.PubMedCrossRefGoogle Scholar
  190. Oppenheimer, D. M. (2003). Not so fast! (and not so frugal!): Rethinking the recognition heuristic. Cognition, 90, B1–B9.PubMedCrossRefGoogle Scholar
  191. Oskarsson, A. T., Van Boven, L., McClelland, G. H., & Hastie, R. (2009). What’s next? Judging sequences of binary events. Psychological Bulletin, 135, 262–285.PubMedCrossRefGoogle Scholar
  192. Over, D. (2004). Rationality and the normative/descriptive distinction. In D. J. Koehler, & N. Harvey (Hrsg.), Blackwell handbook of judgment and decision making (S. 3–18). Malden: Blackwell Publishing.Google Scholar
  193. Pachur, T., & Bröder, A. (2013). Judgment: a cognitive processing perspective. Wiley Interdisciplinary Reviews. Cognitive Science, 4(6), 665–681. doi:10.1002/wcs.1259.PubMedGoogle Scholar
  194. Pachur, T., & Hertwig, R. (2006). On the psychology of the recognition heuristic: Retrieval primacy as a key determinant of its use. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 983–1002. doi:10.1037/0278-7393.32.5.983.PubMedGoogle Scholar
  195. Pachur, T., Bröder, A., & Marewski, J. (2008). The recognition heuristic in memory-based inference: Is recognition a non-compensatory cue? Journal of Behavioral Decision Making, 21, 183–210.CrossRefGoogle Scholar
  196. Payne, J. W. (1982). Contingent decision behavior. Psychological Bulletin, 92, 382–402.CrossRefGoogle Scholar
  197. Payne, J. W., Bettman, J. R., & Johnson, E. J. (1988). Adaptive strategy selection in decision making. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14, 534–552.Google Scholar
  198. Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The adaptive decision maker. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  199. Pennington, N., & Hall, J. A. (2014). An analysis of humor orientation on Facebook: A lens model approach. Humor: International Journal of Humor Research, 27, 1–21.CrossRefGoogle Scholar
  200. Persson, M., & Rieskamp, J. (2009). Inferences from memory: Strategy- and exemplar-based judgment models compared. Acta Psychologica, 130(1), 25–37.PubMedCrossRefGoogle Scholar
  201. Pinker, S. (1997). How the mind works. New York, NY, US: W W Norton und Co.Google Scholar
  202. Platzer, C., & Bröder, A. (2012). Most people do not ignore salient invalid cues in memory-based decisions. Psychonomic Bulletin und Review, 19(4), 654–661.CrossRefGoogle Scholar
  203. Platzer, C., & Bröder, A. (2013). When the Rule is Ruled Out: Exemplars and Rules in Decisions from Memory. Journal of Behavioral Decision Making, 26(5), 429–441. doi:10.1002/bdm.1776.CrossRefGoogle Scholar
  204. Platzer, C., Bröder, A., & Heck, D. W. (2014). Deciding with the eye: How the visually manipulated accessibility of information in memory influences decision behavior. Memory & Cognition, 42(4), 595–608. doi:10.3758/s13421-013-0380-z.CrossRefGoogle Scholar
  205. Pleskac, T. J. (2007). A signal detection analysis of the recognition heuristic. Psychonomic Bulletin und Review, 14, 379–391.CrossRefGoogle Scholar
  206. Pohl, R. F. (Hrsg.). (2004a). Cognitive illusions: A handbook of fallacies and biases in thinking, judgement, and memory. Hove, UK: Psychology Press.Google Scholar
  207. Pohl, R. F. (2004b). Hindsight bias. In R. F. Pohl (Hrsg.), Cognitive illusions: A handbook on fallacies and biases in thinking, judgement and memory (S. 364–378). Hove, UK: Psychology Press.Google Scholar
  208. Pohl, R. F. (2006). Empirical tests of the recognition heuristic. Journal of Behavioral Decision Making, 19, 251–271. doi:10.1002/bdm.522.CrossRefGoogle Scholar
  209. Pohl, R. F. (2007). Ways to assess hindsight bias. Social Cognition, 25, 14–31.CrossRefGoogle Scholar
  210. Pohl, R. F., & Hilbig, B. E. (2012). The role of subjective linear orders in probabilistic inferences. Psychonomic Bulletin und Review, 19, 1178–1186.CrossRefGoogle Scholar
  211. Rakow, T., & Newell, B. R. (2010). Degrees of uncertainty: An overview and framework for future research on experience-based choice. Journal of Behavioral Decision Making, 23, 1–14.CrossRefGoogle Scholar
  212. Reber, R. (2004). Availability. In R. F. Pohl (Hrsg.), Cognitive illusions: A handbook on fallacies and biases in thinking, judgement and memory (S. 147–166). Hove, UK: Psychology Press.Google Scholar
  213. Reber, R., & Schwarz, N. (1999). Effects of perceptual fluency on judgments of truth. Consciousness and Cognition: An International Journal, 8, 338–342. doi:10.1006/ccog.1999.0386.CrossRefGoogle Scholar
  214. Regenwetter, M., Dana, J., & Davis-Stober, C. P. (2011). Transitivity of preferences. Psychological Review, 118(1), 42–56.PubMedCrossRefGoogle Scholar
  215. Renkewitz, F., & Jahn, G. (2012). Memory indexing: A novel method for tracing memory processes in complex cognitive tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 1622–1639.PubMedGoogle Scholar
  216. Richter, T., & Späth, P. (2006). Recognition is used as one cue among others in judgment and decision making. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 150–162.PubMedGoogle Scholar
  217. Rieskamp, J. (2008). The probabilistic nature of preferential choice. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 1446–1465. doi:10.1037/a0013646.PubMedGoogle Scholar
  218. Rieskamp, J., & Hoffrage, U. (2008). Inferences under time pressure: How opportunity costs affect strategy selection. Acta Psychologica, 127, 258–276.PubMedCrossRefGoogle Scholar
  219. Rieskamp, J., & Otto, P. E. (2006). SSL: A theory of how people learn to select strategies. Journal of Experimental Psychology: General, 135, 207–236.CrossRefGoogle Scholar
  220. Russo, J. E. (2011). Eye fixations as a process trace. In M. Schulte-Mecklenbeck, A. Kühberger, & R. Ranyard (Hrsg.), A handbook of process tracing methods for decision research: A critical review and user’s guide (S. 43–64). New York, NY, US: Psychology Press.Google Scholar
  221. Savage, L. J. (1954). The foundations of statistics. Oxford, England: John Wiley und Sons.Google Scholar
  222. Scheibehenne, B., Rieskamp, J., & Wagenmakers, E.-J. (2013). Testing adaptive toolbox models: A Bayesian hierarchical approach. Psychological Review, 120, 39–64. doi:10.1037/a0030777.supp.PubMedCrossRefGoogle Scholar
  223. Schoemaker, P. J. H. (1982). The expected utility model: Its variants, purposes, evidence and limitations. Journal of Economic Literature, 20, 529–563.Google Scholar
  224. Schooler, L. J., & Hertwig, R. (2005). How forgetting aids heuristic inference. Psychological Review, 112, 610–628. doi:10.1037/0033-295X.112.3.610.PubMedCrossRefGoogle Scholar
  225. Schulte-Mecklenbeck, M., Kühberger, A., & Ranyard, R. (Hrsg.). (2011). A handbook of process tracing methods for decision research: A critical review and user’s guide. New York, NY, US: Psychology Press.Google Scholar
  226. Schwarz, N., Bless, H., Strack, F., Klumpp, G., Rittenauer-Schatka, H., & Simons, A. (1991). Ease of retrieval as information: Another look at the availability heuristic. Journal of Personality and Social Psychology, 61, 195–202.CrossRefGoogle Scholar
  227. Sedlmeier, P., & Renkewitz, F. (2013). Forschungsmethoden und Statistik für Psychologen und Sozialwissenschaftler. München: Pearson.Google Scholar
  228. Sedlmeier, P., Hertwig, R., & Gigerenzer, G. (1998). Are judgments of the positional frequencies of letters systematically biased due to availability? Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 754–770.Google Scholar
  229. Shafir, E., Simonson, I., & Tversky, A. (1993). Reason-based choice. Cognition, 49, 11–36.PubMedCrossRefGoogle Scholar
  230. Simon, H. A. (1957). Models of man; social and rational. Oxford England: Wiley.Google Scholar
  231. Simon, H. A. (1990). Invariants of human behavior. Annual Review of Psychology, 41, 1–19.PubMedCrossRefGoogle Scholar
  232. Simonson, I. (1989). Choice based on reasons: The case of attraction and compromise effects. Journal of Consumer Research, 16(2), 158–174. doi:10.1086/209205.CrossRefGoogle Scholar
  233. Söllner, A., Bröder, A., & Hilbig, B. E. (2013). Deliberation versus automaticity in decision making: Which presentation format features facilitate automatic decision making? Judgment and Decision Making, 8, 278–298.Google Scholar
  234. Speekenbrink, M., & Shanks, D. R. (2013). Decision making. In D. Reisberg (Hrsg.), The Oxford handbook of cognitive psychology (S. 682–703). New York, NY, US: Oxford University Press.Google Scholar
  235. Stanovich, K. E. (2010). Decision making and rationality in the modern world. New York: Oxford University Press.Google Scholar
  236. Stanovich, K. E., & West, R. F. (2000). Individual differences in reasoning: Implications for the rationality debate? Behavioral and Brain Sciences, 23, 645–726. doi:10.1017/S0140525X00003435.PubMedCrossRefGoogle Scholar
  237. Starmer, C. (2000). Developments in non-expected Utility Theory: The hunt for a descriptive theory of choice under risk. Journal of Economic Literature, 38, 332–382.CrossRefGoogle Scholar
  238. Starmer, C., & Sugden, R. (1991). Does the random-lottery incentive system elicit true preferences? An experimental investigation. American Economic Review, 81, 971–978.Google Scholar
  239. Stein, E. (1996). Without good reason. The rationality debate in philosophy and cognitive science. Oxford: Clarendon Press.Google Scholar
  240. Strack, F., & Mussweiler, T. (1997). Explaining the enigmatic anchoring effect: Mechanisms of selective accessibility. Journal of Personality and Social Psychology, 73, 437–446.CrossRefGoogle Scholar
  241. Svenson, O. (1979). Process descriptions of decision making. Organizational Behavior und Human Performance, 23, 86–112.CrossRefGoogle Scholar
  242. Teigen, K. H. (2004). Judgements by representativeness. In R. F. Pohl (Hrsg.), Cognitive illusions: A handbook on fallacies and biases in thinking, judgement and memory (S. 165–182). Hove, UK: Psychology Press.Google Scholar
  243. Thaler, R. H., & Sunstein, C. R. (2008). Nudge: Wie man kluge Entscheidungen anstößt. Berlin: Econ.Google Scholar
  244. Thorngate, W. (1980). Efficient decision heuristics. Behavioral Science, 25(3), 219–225. doi:10.1002/bs.3830250306.CrossRefGoogle Scholar
  245. Todd, P. M., Gigerenzer, G., & The ABC Research Group (2012). Ecological rationality: Intelligence in the world. New York: Oxford University Press.CrossRefGoogle Scholar
  246. Tucker, L. R. (1964). A suggested alternative formulation in the developments by Hursch, Hammond, and Hursch, and by Hammond, Hursch, and Todd. Psychological Review, 71(6), 528–530.PubMedCrossRefGoogle Scholar
  247. Tversky, A. (1969). Intransitivity of preferences. Psychological Review, 76, 31–48. doi:10.1037/h0026750.CrossRefGoogle Scholar
  248. Tversky, A. (1972). Elimination by aspects: A theory of choice. Psychological Review, 79(4), 281–299. doi:10.1037/h0032955.CrossRefGoogle Scholar
  249. Tversky, A., & Kahneman, D. (1973). Availability: A heuristic for judging frequency and probability. Cognitive Psychology, 5(2), 207–232.CrossRefGoogle Scholar
  250. Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185, 1124–1131.PubMedCrossRefGoogle Scholar
  251. Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 211, 453–458.PubMedCrossRefGoogle Scholar
  252. Tversky, A., & Kahneman, D. (1982). Evidential impact of base rates. In D. Kahneman, & P. Slovic Tversky et al. (Hrsg.), Judgment under uncertainty: Heuristics and biases (S. 153–160). New York: Cambridge University Press.CrossRefGoogle Scholar
  253. Tversky, A., & Kahneman, D. (1983). Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychological Review, 90, 293–315.CrossRefGoogle Scholar
  254. Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5, 297–323.CrossRefGoogle Scholar
  255. Tversky, A., Sattath, S., & Slovic, P. (1988). Contingent weighting in judgment and choice. Psychological Review, 95(3), 371–384. doi:10.1037/0033-295X.95.3.371.CrossRefGoogle Scholar
  256. Unkelbach, C., & Greifeneder, R. (Hrsg.). (2013). The experience of thinking: How feelings from mental processes influence cognition and behavior. New York: Psychology Press.Google Scholar
  257. Villejoubert, G., & Mandel, D. R. (2002). The inverse fallacy: An account of deviations from Bayes’s theorem and the additivity principle. Memory und Cognition, 30, 171–178.CrossRefGoogle Scholar
  258. Visschers, V. H. M., Meertens, R. M., Passchier, W. W. F., & Vries, N. N. K. de (2009). Probability information in risk communication: A review of the research literature. Risk Analysis, 29, 267–287.PubMedCrossRefGoogle Scholar
  259. Vlaev, I., & Chater, N. (2006). Game relativity: How context influences strategic decision making. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 131–149.PubMedGoogle Scholar
  260. Wänke, M., Schwarz, N., & Bless, H. (1995). The availability heuristic revisited: Experienced ease of retrieval in mundane frequency estimates. Acta Psychologica, 89, 83–90.CrossRefGoogle Scholar
  261. Weber, E. U., & Johnson, E. J. (2009). Mindful judgment and decision making. Annual Review of Psychology, 60, 53–85.PubMedCrossRefGoogle Scholar
  262. Wilson, T. D., Houston, C. E., Etling, K. M., & Brekke, N. (1996). A new look at anchoring effects: Basic anchoring and its antecedents. Journal of Experimental Psychology: General, 125, 387–402.CrossRefGoogle Scholar
  263. Wright, P. (1974). The harassed decision maker: Time pressures, distractions, and the use of evidence. Journal of Applied Psychology, 59, 555–561.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Lehrstuhl für Allgemeine PsychologieUniversität MannheimMannheimDeutschland
  2. 2.Kognitive PsychologieUniversität Koblenz-LandauLandauDeutschland

Personalised recommendations