Optic Flow: Improving Discontinuity Preserving

  • N. Monzón López
  • J. Sánchez
  • A. Salgado de la Nuez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8112)


The aim of this paper is to analyze the discontinuity preserving behavior of two methods in optical flow. With this objetive, we have implemented a well-known optical flow method that uses isotropic TV-L 1 regularization. For the second approach, we have modified this method, by adding a decreasing function in the regularization term, to avoid smoothing at flow discontinuities. As a consequence, we see a high improvement and a very accurate discontinuities detection in some sequences but not good enough in others. Adapting the weight of the decreasing function allows us to better define the flow discontinuities. Nevertheless, the experimental results show that the parameters that yield a good segmentation of the motion field, may also introduce important unstabilities. In this sense, the results seem promising, but it is very difficult to set a unified parameter configuration that works fine for all the sequences. We evaluate the performance of these approaches with some standard test sequences, such as the Middlebury benchmark database or the Yosemite sequence. Looking for the best parameters configuration, which provides the best contour definition, does not typically mean a solution which is closer to the ground truth.


Optical Flow Discontinuity Preserving TV-L1 Variational Methods Isotropic Regularization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Álvarez, L., Esclarín, J., Lefébure, M., Sánchez, J.: A pde model for computing the optical flow. In: XVI Congreso de Ecuaciones Diferenciales y Aplicaciones, C.E.D.Y.A. XVI, Las Palmas de Gran Canaria, Spain, pp. 1349–1356 (1999)Google Scholar
  2. 2.
    Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. International Journal of Computer Vision 92(1), 1–31 (2011)CrossRefGoogle Scholar
  3. 3.
    Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)CrossRefGoogle Scholar
  5. 5.
    Nagel, H.H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Transanctions on Pattern Analysis and Machine Intelligence 8, 565–593 (1986)CrossRefGoogle Scholar
  6. 6.
    Perona, P., Malick, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analasys and Machine Intelligence 12, 629–629 (1990)CrossRefGoogle Scholar
  7. 7.
    Sánchez, J., Monzón, N., Salgado, A.: Robust Optical Flow Estimation. Image Processing On Line 2013, 242–260 (2013)Google Scholar
  8. 8.
    Wedel, A., Cremers, D., Pock, T., Bischof, H.: Structure- and motion-adaptive regularization for high accuracy optic flow. In: IEEE International Conference on Computer Vision, pp. 1663–1668 (September 2009)Google Scholar
  9. 9.
    Xu, L., Jia, J., Matsushita, Y.: Motion detail preserving optical flow estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1293–1300 (June 2010)Google Scholar
  10. 10.
    Zach, C., Pock, T., Bischof, H.: A Duality Based Approach for Realtime TV-L 1 Optical Flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • N. Monzón López
    • 1
  • J. Sánchez
    • 1
  • A. Salgado de la Nuez
    • 1
  1. 1.Centro de Tecnologías de la Imagen Departamento de Informática y SistemasUniversidad de Las Palmas de Gran CanariaSpain

Personalised recommendations