Traffic Light Recognition During the Night Based on Fuzzy Logic Clustering

  • Moises Diaz-Cabrera
  • Pietro Cerri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8112)

Abstract

Traffic light recognition in night conditions is explored throughout this paper. A system detecting suspended traffic lights in urban streets is proposed. Images are acquired by a color camera installed on the roof of a car. Fuzzy logic-based clustering provides robust color detection. Additionally, other techniques end up recognizing the traffic light state. The detection rate is quite high and the false positive proportion is really low.

Keywords

Traffic Lights Detection Advanced Driver Assistance System (ADAS) Patter Recognition Image Processing Color Threshold Segmentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Charette, R., Nashashibi, F.: Real time visual traffic lights recognition based on spot light detection and adaptive traffic lights templates. In: 2009 IEEE Intelligent Vehicles Symposium, pp. 358–363 (June 2009)Google Scholar
  2. 2.
    Chung, Y., Wang, J., Chen, S.: A vision-based traffic light detection system at intersections. Journal of Taiwan Normal University: Mathematics, Science and Technology 47(1), 67–86 (2002)Google Scholar
  3. 3.
    Diaz-Cabrera, M., Cerri, P.: Traffic light recognition during night based on fuzzy logic clustering. In: International Conference EUROCAST Workshop on Computer Vision, Sensing and Image Processing (February 2013)Google Scholar
  4. 4.
    Diaz-Cabrera, M., Cerri, P., Sanchez-Medina, J.J.: Suspended traffic lights detection and distance estimation using color features. In: 2012 IEEE Intelligent Transportation System Conference - ITSC, pp. 1315–1320 (September 2012)Google Scholar
  5. 5.
    Fairfield, N., Urmson, C.: Traffic light mapping and detection. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 5421–5426 (May 2011)Google Scholar
  6. 6.
    Glassner, A.: Fill ’er up (graphics filling algorithms). IEEE Computer Graphics and Applications 21(1), 78–85 (2001)CrossRefGoogle Scholar
  7. 7.
    Kim, Y., Kim, K., Yang, X.: Real time traffic light recognition system for color vision deficiencies. In: International Conference on Mechatronics and Automation, ICMA 2007, pp. 76–81 (August 2007)Google Scholar
  8. 8.
    Lindner, F., Kressel, U., Kaelberer, S.: Robust recognition of traffic signals. In: 2004 IEEE Intelligent Vehicles Symposium, pp. 49–53 (June 2004)Google Scholar
  9. 9.
    Nienhuser, D., Drescher, M., Zollner, J.: Visual state estimation of traffic lights using hidden markov models. In: 2010 13th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 1705–1710 (September 2010)Google Scholar
  10. 10.
    Omachi, M., Omachi, S.: Traffic light detection with color and edge information. In: 2nd IEEE International Conference on Computer Science and Information Technology, ICCSIT 2009, pp. 284–287 (August 2009)Google Scholar
  11. 11.
    Omachi, M., Omachi, S.: Detection of traffic light using structural information. In: 2010 IEEE 10th International Conference on Signal Processing (ICSP), pp. 809–812 (October 2010)Google Scholar
  12. 12.
    Vu, A., Ramanandan, A., Chen, A., Farrell, J., Barth, M.: Real-time computer vision/dgps-aided inertial navigation system for lane-level vehicle navigation. IEEE Transactions on Intelligent Transportation Systems 13(2), 899–913 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Moises Diaz-Cabrera
    • 1
  • Pietro Cerri
    • 2
  1. 1.University of Las Palmas de Gran CanariaSpain
  2. 2.VisLabUniversity of ParmaItaly

Personalised recommendations