UHDB11 Database for 3D-2D Face Recognition

  • George Toderici
  • Georgios Evangelopoulos
  • Tianhong Fang
  • Theoharis Theoharis
  • Ioannis A. Kakadiaris
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8333)


Performance boosts in face recognition have been facilitated by the formation of facial databases, with collection protocols customized to address challenges such as light variability, expressions, pose, sensor/modality differences, and, more recently, uncontrolled acquisition conditions. In this paper, we present database UHDB11, to facilitate 3D-2D face recognition evaluations, where the gallery has been acquired using 3D sensors (3D mesh and texture) and the probes using 2D sensors (images). The database consists of samples from 23 individuals, in the form of 2D high-resolution images spanning six illumination conditions and 12 head-pose variations, and 3D facial mesh and texture. It addresses limitations regarding resolution, variability and type of 3D/2D data and has demonstrated to be statistically more challenging, diverse and information rich than existing cohorts of 10 times larger number of subjects. We propose a set of 3D-2D experimental configurations, with frontal 3D galleries and pose-illumination varying probes and provide baseline performance for identification and verification (available at ).


face recognition face databases 3D-2D facial data illumination face pose verification identification computer vision 


  1. 1.
    UHDB11 face database (2013),
  2. 2.
    3dMD. 3D Imaging Systems and Software (November 2012)Google Scholar
  3. 3.
    Al-Osaimi, F.R., Bennamoun, M., Mian, A.S.: Illumination normalization of facial images by reversing the process of image formation. Machine Vision and Applications 22(6), 899–911 (2011)CrossRefGoogle Scholar
  4. 4.
    Bowyer, K., Chang, K., Flynn, P.: A survey of approaches and challenges in 3D and multi-modal 3D+2D face recognition. Computer Vision and Image Understanding 101(1), 1–15 (2006)CrossRefGoogle Scholar
  5. 5.
    Faltemier, T.C., Bowyer, K.W., Flynn, P.J.: Using multi-instance enrollment to improve performance of 3D face recognition. Computer Vision and Image Understanding 112(2), 114–125 (2008)CrossRefGoogle Scholar
  6. 6.
    Gross, R.: Face databases. In: Li, S.Z., Jain, A.K. (eds.) Handbook of Face Recognition, pp. 301–327. Springer, New York (2005)CrossRefGoogle Scholar
  7. 7.
    Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-PIE. Image and Vision Computing 28(5), 807–813 (2010)CrossRefGoogle Scholar
  8. 8.
    Huang, D., Ardabilian, M., Wang, Y., Chen, L.: Oriented gradient maps based automatic asymmetric 3D-2D face recognition. In: Proc. 5th IAPR International Conference on Biometrics, New Delhi, India, March 29-April 1, pp. 125–131 (2012)Google Scholar
  9. 9.
    Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the Wild: A database for studying face recognition in unconstrained environments. In: ECCV Workshop on Faces in ’Real-Life’ Images: Detection, Alignment, and Recognition, Marseille, France, October 17-20 (2008)Google Scholar
  10. 10.
    Phillips, P.J., Moon, H., Rizvi, S., Rauss, P.J.: The FERET evaluation methodology for face recognition algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence 22(10), 1090–1104 (2000)CrossRefGoogle Scholar
  11. 11.
    Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the Face Recognition Grand Challenge. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, June 20-25 (2005)Google Scholar
  12. 12.
    Phillips, P.J., Beveridge, J.R., Draper, B.A., Givens, G., O‘Toole, A.J., Bolme, D.S., Dunlop, J., Lui, Y.M., Sahibzada, H., Weimer, S.: An introduction to the Good, the Bad, and the Ugly face recognition challenge problem. In: 9th IEEE International Conference on Automatic Face and Gesture Recognition, Santa Barbara, CA, March 21-25 (2011)Google Scholar
  13. 13.
    Sandbach, G., Zafeiriou, S., Pantic, M., Yin, L.: Static and dynamic 3D facial expression recognition: A comprehensive survey. Image and Vision Computing 30(10), 683–697 (2012)CrossRefGoogle Scholar
  14. 14.
    Savran, A., Alyüz, N., Dibeklioğlu, H., Çeliktutan, O., Gökberk, B., Sankur, B., Akarun, L.: Bosphorus database for 3D face analysis. In: Schouten, B., Juul, N.C., Drygajlo, A., Tistarelli, M. (eds.) BIOID 2008. LNCS, vol. 5372, pp. 47–56. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression database. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12), 1615–1618 (2003)CrossRefGoogle Scholar
  16. 16.
    Toderici, G., Passalis, G., Zafeiriou, S., Tzimiropoulos, G., Petrou, M., Theoharis, T., Kakadiaris, I.A.: Bidirectional relighting for 3D-aided 2D face recognition. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco, CA, June 13-18 (2010)Google Scholar
  17. 17.
    Vijayan, V., Bowyer, K., Flynn, P., Huang, D., Chen, L., Ocegueda, O., Shah, S., Kakadiaris, I.A.: Twins 3D face recognition challenge. In: Proc. International Joint Conference on Biometrics, Washington, DC, October 11-13 (2011)Google Scholar
  18. 18.
    Yin, L., Wei, X., Sun, Y., Wang, J., Rosato, M.: A 3D facial expression database for facial behavior research. In: Proc. 7th IEEE International Conference on Automatic Face and Gesture Recognition, Southampton, UK, April 2-6, pp. 211–216 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • George Toderici
    • 1
  • Georgios Evangelopoulos
    • 1
  • Tianhong Fang
    • 1
  • Theoharis Theoharis
    • 2
    • 1
  • Ioannis A. Kakadiaris
    • 1
  1. 1.Computational Biomedicine Lab, Department of Computer ScienceUniversity of HoustonHoustonUSA
  2. 2.IDINorwegian University of Science and Technology (NTNU)Norway

Personalised recommendations