Methods of Improving the Dependability of Self-optimizing Systems

  • Rafal Dorociak
  • Juergen Gausemeier
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


Various methods have been developed in the Collaborative Research Center 614 which can be used to improve the dependability of self-optimizing systems. These methods are presented in this chapter. They are sorted into two categories with regard to the development process of self-optimizing systems. On one hand, there are methods which can be applied during the Conceptual Design Phase. On the other hand, there are methods that are applicable during Design and Development.

There are domain-spanning methods as well as methods that have been specifically developed for particular domains, e.g., software engineering or control engineering. The methods address different attributes of dependability, such as reliability, availability or safety.

Each section is prefaced with a short overview of the classification of the described method regarding the corresponding domain(s), as well as its dependability attributes, to provide the reader with a brief outline of the methods’ areas of application. Information about independently applicable methods or existing relationships and interactions with other methods or third-party literature is also provided.

The development process for self-optimizing mechatronic systems which was introduced in Chap. 2 consists of two main phases: Conceptual Design and Design and Development. The main result of the Conceptual Design is the Principle Solution, which includes all information required for the concrete development during the second phase.


Virtual Machine Bayesian Network Pareto Front Multiobjective Optimization Mechatronic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Condition monitoring and diagnostics of machines – General guidelines (ISO 17359:2011). International Standard (2011)Google Scholar
  2. 2.
    Aickelin, U., Cayzer, S.: The Danger Theory and Its Application to Artificial Immune Systems. In: 1st International Conference on ARtificial Immune Systems (ICARIS 2002), Canterbury, UK, pp. 141–148 (2002)Google Scholar
  3. 3.
    Allgower, E.L., Georg, K.: Numerical continuation methods, vol. 33. Springer, Berlin (1990), doi:10.1007/978-3-642-61257-2CrossRefzbMATHGoogle Scholar
  4. 4.
    Alpaydın, E.: Introduction to Machine Learning. The MIT Press (2004)Google Scholar
  5. 5.
    Alur, R.: Formal Verification of Hybrid Systems. In: Proceedings of the 9th ACM International Conference on Embedded Software, Taipei, TW, pp. 273–278. ACM, New York (2011), doi:10.1145/2038642.2038685Google Scholar
  6. 6.
    Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Science 126, 183–235 (1994), doi:10.1016/0304-3975(94)90010-8CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Alves-Foss, J., Harrison, W.S., Taylor, C.: The MILS Architecture for High Assurance Embedded Systems. International Journal of Embedded Systems 2(3), 239–247 (2006), doi:10.1504/IJES.2006.014859CrossRefGoogle Scholar
  8. 8.
    Androutsopoulos, K., Clark, D., Harman, M., Hierons, R.M., Li, Z., Tratt, L.: Amorphous Slicing of Extended Finite State Machines. IEEE Transactions on Software Engineering 99(PrePrints), 1 (2012), doi:10.1109/TSE.2012.72Google Scholar
  9. 9.
    Anis, A., Goschin, S., Lehrig, S., Stritzke, C., Zolynski, T.: Developer Documentation of the Project Group SafeBots II. Project group. University of Paderborn, Department of Computer Science, Paderborn, DE (2012)Google Scholar
  10. 10.
    Arkoudas, K., Rinard, M.: Deductive Runtime Certification. In: Proceedings of the 2004 Workshop on Runtime Verification (RV 2004), Barcelona, ES (2004), doi:10.1016/j.entcs.2004.01.035Google Scholar
  11. 11.
    Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic Concepts and Taxonomy of Dependable and Secure Computing. IEEE Transactions on Dependable and Secure Computing 1(1), 11–33 (2004), doi:10.1109/TDSC.2004.2CrossRefGoogle Scholar
  12. 12.
    Baldin, D., Kerstan, T.: Proteus, a Hybrid Virtualization Platform for Embedded Systems. In: Rettberg, A., Zanella, M.C., Amann, M., Keckeisen, M., Rammig, F.J. (eds.) IESS 2009. IFIP AICT, vol. 310, pp. 185–194. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen and the Art of Virtualization. In: Proceedings of the 19th ACM Symposium on Operating Systems Principles, Bolton Landing, NY, US (2003), doi:10.1145/945445.945462Google Scholar
  14. 14.
    Barnett, M., Schulte, W.: Spying on Components: A Runtime Verification Technique. In: Leavens, G.T., Sitaraman, M., Giannakopoulou, D. (eds.) Workshop on Specification and Verification of Component-Based Systems, pp. 1–9. Published as Iowa State Technical Report 01-09a (2001)Google Scholar
  15. 15.
    Becker, S., Brenner, C., Brink, C., Dziwok, S., Heinzemann, C., Löffler, R., Pohlmann, U., Schäfer, W., Suck, J., Sudmann, O.: The MechatronicUML Design Method – Process, Syntax, and Semantics. Tech. Rep. tr-ri-12-326, Software Engineering Group. Heinz Nixdorf Institute, University of Paderborn (2012)Google Scholar
  16. 16.
    Behrmann, G., David, A., Larsen, K.G., Pettersson, P., Yi, W., Hendriks, M.: Uppaal 4.0. In: Quantitative Evaluation of Systems, QEST 2006, pp. 125–126. IEEE Computer Society (2006), doi:10.1109/QEST.2006.59Google Scholar
  17. 17.
    Ben-Gal, I.: Bayesian Networks. Encyclopedia of Statistics in Quality and Reliability (2007), doi:10.1002/9780470061572.eqr089Google Scholar
  18. 18.
    Berezin, S., Campos, S.V.A., Clarke, E.M.: Compositional Reasoning in Model Checking. In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, pp. 81–102. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  19. 19.
    Bielawny, D., Krüger, M., Reinold, P., Timmermann, J., Trächtler, A.: Iterative learning of Stochastic Disturbance Profiles Using Bayesian Networks. In: 9th International Conference on Industrial Informatics (INDIN), Lisbon, PT (2011), doi:10.1109/INDIN.2011.6034920Google Scholar
  20. 20.
    Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Advances in Computers 58, 118–149 (2003), Google Scholar
  21. 21.
    Birolini, A.: Reliability Engineering – Theory and Practice, 5th edn. Springer, Heidelberg (2007), doi:10.1007/978-3-662-03792-8Google Scholar
  22. 22.
    Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant Control. Springer (2006), doi:10.1007/978-3-662-05344-7Google Scholar
  23. 23.
    Blesken, M., Rückert, U., Steenken, D., Witting, K., Dellnitz, M.: Multiobjective optimization for transistor sizing of CMOS logic standard cells using set-oriented numerical techniques. In: NORCHIP 2009, pp. 1–4 (2009), doi:10.1109/NORCHP.2009.5397800Google Scholar
  24. 24.
    Borkar, S.: Designing Reliable Systems from Unreliable Components: The Challenges of Transistor Variability and Degradation. IEEE Micro 25(6), 10–16 (2005), doi:10.1109/MM.2005.110CrossRefGoogle Scholar
  25. 25.
    Cao, Y., Hussaini, M., Zang, T.: An Efficient Monte Carlo Method for Optimal Control Problems with Uncertainty. Computational Optimization and Applications 26, 219–230 (2003), doi:10.1023/A:1026079021836CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Cassez, F., Roux, O.H.: Structural Translation from Time Petri Nets to Timed Automata. Electron. Notes Theor. Comput. Sci. 128, 145–160 (2005), doi:10.1016/j.jss.2005.12.021CrossRefGoogle Scholar
  27. 27.
    de Castro, L., Timmis, J.: Artificial Immune Systems: A New Computational Approach. Springer, London (2002), Google Scholar
  28. 28.
    Chen, F., Rosu, G.: Towards Monitoring-Oriented Programming: A Paradigm Combining Specification and Implementation. In: Proceedings of the 2003 Workshop on Runtime Verification (RV 2003), Boulder, CO, US (2003), doi:10.1016/S1571-0661(04)81045-4Google Scholar
  29. 29.
    Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994), doi:10.1145/186025.186051CrossRefGoogle Scholar
  30. 30.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)Google Scholar
  31. 31.
    Dasgupta, D., Nino, F.: Immunological Computation: Theory and Applications, 1st edn. Auerbach Publications, Boston (2008)CrossRefGoogle Scholar
  32. 32.
    Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley (2001)Google Scholar
  33. 33.
    Dell’Aere, A.: Numerical Methods for the Solution of Bi-level Multi-objective Optimization Problems. HNI-Verlagsschriftenreihe. Heinz Nixdorf Institute, University of Paderborn, Paderborn (2008)Google Scholar
  34. 34.
    Dellnitz, M., Schütze, O., Hestermeyer, T.: Covering Pareto Sets by Multilevel Subdivision Techniques. Journal of Optimization Theory and Application 124(1), 113–136 (2005), doi:10.1007/s10957-004-6468-7CrossRefzbMATHGoogle Scholar
  35. 35.
    Dellnitz, M., Witting, K.: Computation of robust Pareto points. International Journal of Computing Science and Mathematics 2(3), 243–266 (2009), doi:10.1504/IJCSM.2009.027876CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    DeMillo, R.A., Offutt, A.J.: Constraint-based Automatic Test Data Generation. IEEE Transactions on Software Engineering 17(9) (1991), doi:10.1109/32.92910Google Scholar
  37. 37.
    Deuflhard, P., Hohmann, A.: Numerical analysis in modern scientific computing: an introduction, 2nd edn. Springer, New York (2003), doi:10.1007/978-0-387-21584-6CrossRefGoogle Scholar
  38. 38.
    Dorociak, R.: Early Probabilistic Reliability Analysis of Mechatronic Systems. In: Proceedings of the Reliability and Maintainability Symposium (2012), doi:10.1109/RAMS.2012.6175464Google Scholar
  39. 39.
    Dorociak, R., Gausemeier, J.: Absicherung der Zuverlässigkeit komplexer mechatronischer Systeme auf Basis der domänenübergreifenden Prinziplösung. In: 25. Fachtagung: Technische Zuverlässigkeit (TTZ), Leonberg, DE (2011)Google Scholar
  40. 40.
    Drusinsky, D.: The Temporal Rover and the ATG Rover. In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 323–330. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  41. 41.
    Easwaran, A., Kannan, S., Sokolsky, O.: Steering of Discrete Event Systems: Control Theory Approach. Electr. Notes Theor. Comput. Sci. 144(4), 21–39 (2006), doi:10.1016/j.entcs.2005.02.066CrossRefGoogle Scholar
  42. 42.
    Eckardt, T., Heinzemann, C., Henkler, S., Hirsch, M., Priesterjahn, C., Schäfer, W.: Modeling and Verifying Dynamic Communication Structures Based on Graph Transformations, pp. 3–22. Springer (2013), doi:10.1007/s00450-011-0184-yGoogle Scholar
  43. 43.
    Ericson, C.: Hazard Analysis Techniques for System Safety. John Wiley & Sons, Hoboken (2005), doi:10.1002/0471739421CrossRefGoogle Scholar
  44. 44.
    Estler, H.C., Wehrheim, H.: Heuristic Search-Based Planning for Graph Transformation Systems. In: Proceedings of the Workshop on Knowledge Engineering for Planning and Scheduling, Freiburg, DE, pp. 54–61 (2011)Google Scholar
  45. 45.
    European Committee for Electrotechnical Standardization (CENELEC): CENELEC EN 50129: 2003. Railway Applications – Communication, Signalling and Processing Systems – Safety Related Electronic Systems for Signalling. European Standard (2003)Google Scholar
  46. 46.
    European Committee for Electrotechnical Standardization (CENELEC): Railway applications Communication, signalling and processing systems Software for railway control and protection systems, CENELEC EN 50128. European Standard (2011)Google Scholar
  47. 47.
    Fenelon, P., McDermid, J.A., Nicolson, M., Pumfrey, D.J.: Towards Integrated Safety Analysis and Design. ACM SIGAPP Applied Computing Review 2(1), 21–32 (1994), doi:10.1145/381766.381770CrossRefGoogle Scholar
  48. 48.
    FG Rammig, University of Paderborn: ORCOS – Organic Reconfigurable Operating System, (accessed August 12, 2013)
  49. 49.
    Figueira, J., Greco, S., Ehrgott, M.: Multiple Criteria Decision Analysis: State of the Art Surveys. Kluwer Academic Publishers, Boston (2005), doi:10.1007/b100605Google Scholar
  50. 50.
    Fine, S., Ziv, A.: Coverage Directed Test Generation for Functional Verification Using Bayesian Networks. In: Proceedings of the 40th annual Design Automation Conference, Anaheim, CA, US (2003), doi:10.1145/775832.775907Google Scholar
  51. 51.
    Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A New Graph Rewrite Language based on the Unified Modeling Language. In: 6th Int. Workshop on Theory and Application of Graph Transformations (TAGT 1998) (1998)Google Scholar
  52. 52.
    Flaßkamp, K., Heinzemann, C., Krüger, M., Steenken, D., Ober-Blöbaum, S., Schäfer, W., Trächtler, A., Wehrheim, H.: Sichere Konvoibildung mit Hilfe optimaler Bremsprofile. In: Gausemeier, J., Rammig, F.J., Schäfer, W., Trächtler, A. (eds.) Tagungsband zum 9. Paderborner Workshop Entwurf Mechatronischer Systeme, HNI-Verlagsschriftenreihe. Heinz Nixdorf Institute, University of Paderborn, Paderborn (2013)Google Scholar
  53. 53.
    Fox, M., Long, D.: PDDL 2.1: An Extension to PDDL for Expressing Temporal Planning Domains. Journal of Artificial Intelligence Research, 189–208 (2003), doi:10.1613/jair.1129Google Scholar
  54. 54.
    Gausemeier, J., Frank, U., Donoth, J., Kahl, S.: Specification Technique for the Description of Self-Optimizing Mechatronic Systems. Research in Engineering Design 20(4), 201–223 (2009), doi:10.1007/s00163-008-0058-xCrossRefGoogle Scholar
  55. 55.
    Gausemeier, J., Rammig, F.J., Schäfer, W. (eds.): Design Methodology for Intelligent Technical Systems. Lecture Notes in Mechanical Engineering. Springer, Heidelberg (2014), doi:10.1007/978-3-642-45435-6_2Google Scholar
  56. 56.
    Geisler, J., Witting, K., Trächtler, A., Dellnitz, M.: Multiobjective Optimization of Control Trajectories for the Guidance of a Rail-bound Vehicle. In: Proceedings of the 17th IFAC World Congress of The International Federation of Automatic Control, Seoul, KR (2008), doi:10.3182/20080706-5-KR-1001.00738Google Scholar
  57. 57.
    Ghallab, M., Nau, D., Traverso, P.: Automated Planning – Theory and Practice. Morgan Kaufmann (2004)Google Scholar
  58. 58.
    Giaquinta, M., Hildebrandt, S.: Calculus of variations. Springer, Berlin (1996)Google Scholar
  59. 59.
    Giese, H., Tichy, M.: Component-Based Hazard Analysis: Optimal Designs, Product Lines, and Online-Reconfiguration. In: Górski, J. (ed.) SAFECOMP 2006. LNCS, vol. 4166, pp. 156–169. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  60. 60.
    Gill, P.E., Jay, L.O., Leonard, M.W., Petzold, L.R., Sharma, V.: An SQP Method for the Optimal Control of Large-scale Dynamical Systems. Journal of Computational and Applied Mathematics 120, 197–213 (2000), doi:10.1016/S0377-0427(00)00310-1CrossRefzbMATHMathSciNetGoogle Scholar
  61. 61.
    Gilles, K., Groesbrink, S., Baldin, D., Kerstan, T.: Proteus Hypervisor – Full Virtualization and Paravirtualization for Multi-Core Embedded Systems. In: Schirner, G., Götz, M., Rettberg, A., Zanella, M.C., Rammig, F.J. (eds.) IESS 2013. IFIP AICT, vol. 403, pp. 293–305. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  62. 62.
    Groesbrink, S.: A First Step Towards Real-time Virtual Machine Migration in Heterogeneous Multi-Processor Systems. In: Proceedings of the 1st Joint Symposium on System-Integrated Intelligence, Hannover, DE (2012)Google Scholar
  63. 63.
    Groesbrink, S.: Basics of Virtual Machine Migration on Heterogeneous Architectures for Self-Optimizing Mechatronic Systems. Necessary Conditions and Implementation Issues 7, 69–79 (2013)Google Scholar
  64. 64.
    Güdemann, M., Ortmeier, F., Reif, W.: Safety and Dependability Analysis of Self-Adaptive Systems. In: Proccedings of the 2nd International Symposium on Leveraging Applications of Formal Methods, Verification and Validation, ISoLA 2006 (2006), doi:10.1109/ISoLA.2006.38Google Scholar
  65. 65.
    Hagemeyer, J., Hilgenstein, A., Jungewelter, D., Cozzi, D., Felicetti, C., Rueckert, U., Korf, S., Koester, M., Margaglia, F., Porrmann, M., Dittmann, F., Ditze, M., Harris, J., Sterpone, L., Ilstad, J.: A scalable platform for run-time reconfigurable satellite payload processing. In: AHS, pp. 9–16. IEEE (2012), doi:10.1109/AHS.2012.6268642Google Scholar
  66. 66.
    Hagemeyer, J., Kettelhoit, B., Koester, M., Porrmann, M.: Design of Homogeneous Communication Infrastructures for Partially Reconfigurable FPGAs. In: Proceedings of the International Conference on Engineering of Reconfigurable Systems and Algorithms, Las Vegas, NV, US. CSREA Press (2007)Google Scholar
  67. 67.
    Hampton, M., Petithomme, S.: Leveraging a Commercial Mutation Analysis Tool for Research. In: Proceedings of the Testing Academic & Industrial Conference Practice and Research Techniques, Windsor, UK (2007), doi:10.1109/TAIC.PART.2007.39Google Scholar
  68. 68.
    Havelund, K., Rosu, G.: Java PathExplorer – A runtime verification tool. In: Proceedings 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space (ISAIRAS 2001), Montreal, QC, CA (2001), doi: Scholar
  69. 69.
    Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science, New Brunswick, NJ, US, pp. 278–292. IEEE Computer Society (1996), doi:10.1109/LICS.1996.561342Google Scholar
  70. 70.
    Hillermeier, C.: Nonlinear Multiobjective Optimization – A Generalized Homotopy Approach. Birkhäuser, Berlin (2001)CrossRefzbMATHGoogle Scholar
  71. 71.
    Hölscher, C., Keßler, J.H., Krüger, M., Trächtler, A., Zimmer, D.: Hierarchical Optimization of Coupled Self-Optimizing Systems. In: Proceedings of the 10th IEEE International Conference on Industrial Informatics, Beijing, CN (2012), doi:10.1109/INDIN.2012.6301199Google Scholar
  72. 72.
    Howden, W.E.: Weak Mutation Testing and Completeness of Test Sets. IEEE Transactions on Software Engineering 8(4) (1982), doi:10.1109/TSE.1982.235571Google Scholar
  73. 73.
    International Electrotechnical Commission (IEC): IEC 60812: 2006. Analysis techniques for system reliability – Procedure for failure mode and effects analysis (FMEA). International Standard (2006)Google Scholar
  74. 74.
    International Electrotechnical Commission (IEC): IEC 61025: Fault Tree Analysis (FTA). International Standard (2006)Google Scholar
  75. 75.
    Isermann, R.: Fault-Diagnosis Systems – An Introduction from Fault Detection to Fault Tolerance. Springer, Berlin (2005), doi:10.1007/3-540-30368-5Google Scholar
  76. 76.
    Kerstan, T., Baldin, D., Groesbrink, S.: Full Virtualization of Real-Time Systems by Temporal Partitioning. In: Proceedings of the of the 6th International Workshop on Operating Systems Platforms for Embedded Real-Time Applications, Brussels, BE (2010)Google Scholar
  77. 77.
    Kerstan, T., Oertel, M.: Design of a Real-time Optimized Emulation Method. In: Proceedings of the Design, Automation and Test in Europe, Dresden, DE (2010), doi:10.1109/DATE.2010.5457126Google Scholar
  78. 78.
    King, S., Dunlap, G., Chen, P.: Operating System Support for Virtual Machines. In: Proc. of the USENIX Annual Technical Conference (2003)Google Scholar
  79. 79.
    Kleywegt, A.J., Shapiro, A., Homem-de Mello, T.: The Sample Average Approximation Method for Stochastic Discrete Optimization. SIAM J. on Optimization 12(2), 479–502 (2002), doi:10.1137/S1052623499363220CrossRefMathSciNetGoogle Scholar
  80. 80.
    Klöpper, B.: Ein Beitrag zur Verhaltensplanung für interagierende intelligente mechatronische Systeme in nicht-deterministischen Umgebungen. In: HNI-Verlagsschriftenreihe, vol. 253. Heinz Nixdorf Institute, University of Paderborn, Paderborn (2009)Google Scholar
  81. 81.
    Klöpper, B., Aufenanger, M., Adelt, P.: Planning for Mechatronics Systems – Architechture, Methods and Case Study. Engineering Applications of Artificial Intelligence 25(1), 174–188 (2012), doi:10.1016/j.engappai.2011.08.004CrossRefGoogle Scholar
  82. 82.
    Klöpper, B., Sondermann-Wölke, C., Romaus, C.: Probabilistic Planning for Predictive Condition Monitoring and Adaptation within the Self-Optimizing Energy Management of an Autonomous Railway Vehicle. Journal for Robotics and Mechatronics 24(1), 5–15 (2012)Google Scholar
  83. 83.
    Koester, M., Luk, W., Hagemeyer, J., Porrmann, M., Rueckert, U.: Design Optimizations for Tiled Partially Reconfigurable Systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 19(6), 1048–1061 (2011), doi:10.1109/TVLSI.2010.2044902CrossRefGoogle Scholar
  84. 84.
    Kopetz, H.: Real-time systems: design principles for distributed embedded applications. Kluwer international series in engineering and computer science: Real-time systems. Kluwer Academic Publishers (2011), doi:10.1007/978-1-4419-8237-7Google Scholar
  85. 85.
    Kranenburg, T., van Leuken, R.: MB-LITE: A Robust, Light-weight Soft-core Implementation of the MicroBlaze Architecture. In: Proceedings of Design, Automation, and Test in Europe Conference, Dresden, DE (2010), doi:10.1109/DATE.2010.5456903Google Scholar
  86. 86.
    Krüger, M., Witting, K., Dellnitz, M., Trächtler, A.: Robust Pareto Points with Respect to Crosswind of an Active Suspension System. In: Proceedings of the 1st Joint International Symposium on System-Integrated Intelligence, Hannover, DE (2012)Google Scholar
  87. 87.
    Kuhn, H., Tucker, A.: Nonlinear Programming. In: Neumann, J. (ed.) Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, US, pp. 481–492 (1951)Google Scholar
  88. 88.
    Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Commununications of the ACM 17, 453–455 (1974), doi:10.1145/361082.361093CrossRefzbMATHMathSciNetGoogle Scholar
  89. 89.
    Langseth, H., Portinale, L.: Bayesian Networks in Reliability. Reliability Engineering & System Safety 92(1), 92–108 (2007), doi:10.1016/j.ress.2005.11.037CrossRefGoogle Scholar
  90. 90.
    Lee, J., Ni, D., Djurdjanovic, H., Qiu, H., Liao, H.: Intelligent prognostic tools and e-maintenance. Computers in Industry 57, 476–489 (2006), doi:10.1016/j.compind.2006.02.014CrossRefGoogle Scholar
  91. 91.
    van Leeuwen, J., Hartmanis, J., Goos, G. (eds.): Partial-Order Methods for the Verification of Concurrent Systems: An Approach to the State-Explosion Problem. Springer, New York (1996), doi: Scholar
  92. 92.
    Leveson, N.G.: Safeware: System Safety and Computers. ACM (1995)Google Scholar
  93. 93.
    Levine, W.: The Control Handbook: Control System Fundamentals, Control System Applications, Control System Advanced Methods. Electrical Engineering Handbook Series. Taylor & Francis Group (2010)Google Scholar
  94. 94.
    Leyendecker, S., Lucas, L.J., Owhadi, H., Ortiz, M.: Optimal control strategies for robust certification. Journal of Computational and Nonlinear Dynamics 5(3), 031,008–031,008 (2010), doi:10.1115/1.4001375Google Scholar
  95. 95.
    Li, J., Zhang, H.C., Lin, Z.: Asymmetric negotiation based collaborative product design for component reuse in disparate products. Computers & Industrial Engineering 57(1), 80–90 (2009), doi:10.1016/j.cie.2008.11.021CrossRefGoogle Scholar
  96. 96.
    Luenberger, D.G.: Linear and nonlinear programming, 2nd edn. Addison-Wesley, Reading (1987)Google Scholar
  97. 97.
    Marsden, J.E., West, M.: Discrete Mechanics and Variational Integrators. Acta Numerica 10, 357–514 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  98. 98.
    Mathew, G., Pinto, A.: Optimal design of a class of hybrid systems with uncertain parameters. In: 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, US, pp. 539–544 (2011), doi:10.1109/CDC.2011.6161357Google Scholar
  99. 99.
    Matzinger, P.: Tolerance, danger, and the extended family. Annual Review of Immunology 12(1), 991–1045 (1994), doi:10.1146/annurev.iy.12.040194.005015CrossRefGoogle Scholar
  100. 100.
    Meijer, R.: PDDL Planning Problems and GROOVE Graph Transformations: Combining Two Worlds with a Translator. In: 17th Twente Student Conference on IT (2012)Google Scholar
  101. 101.
    Meyer, T., Keßler, J.H., Sextro, W., Trächtler, A.: Increasing Intelligent Systems’ Reliability by using Reconfiguration. In: Proceedings of the Annual Reliability and Maintainability Symposium, RAMS (2013), doi:10.1109/RAMS.2013.6517636Google Scholar
  102. 102.
    Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers (1999), doi:10.1007/978-1-4615-5563-6Google Scholar
  103. 103.
    Miner, M.: Cumulative Damage in Fatigue. ASME Journal of Applied Mechanics 12, A159–A164 (1945)Google Scholar
  104. 104.
    Myers, G.J., Sandler, C.: The Art of Software Testing. John Wiley & Sons (2004)Google Scholar
  105. 105.
    National Aerospace Laboratory in the Netherlands: The Safety Methods Database (2012), (accessed September 12, 2012)
  106. 106.
    Newcomb, R.W. (ed.): Linear Optimal Control. Networks Series. Prentice-Hall (1971)Google Scholar
  107. 107.
    Ober-Blöbaum, S., Junge, O., Marsden, J.E.: Discrete Mechanics and Optimal Control: An Analysis. Control, Optimisation and Calculus of Variations 17(2), 322–352 (2011), doi:10.1051/cocv/2010012Google Scholar
  108. 108.
    Ober-Blöbaum, S., Seifried, A.: A multiobjective optimization approach for the optimal control of technical systems with uncertainties. In: Proceedings of the European Control Conference, Zürich, CH, pp. 204–209 (2013)Google Scholar
  109. 109.
    Oberthür, S.: Towards an RTOS for Self-Optimizing Mechatronic Systems. In: HNI-Verlagsschriftenreihe. Heinz Nixdorf Institute, University of Paderborn, Paderborn (2010)Google Scholar
  110. 110.
    Object Management Group: Unified Modeling Language (UML) 2.3 Superstructure Specification (2010), (Document formal/2010-05-05)
  111. 111.
    Park, R.: Contamination Control, and OEM Perspective. In: Workshop on Total Contamination Control. Centre for Machine Condition Monitoring. Monash University (1997)Google Scholar
  112. 112.
    Peterson, M., Winer, W.: Wear Control Handbook. The American Society of Mechanical Engineers (1980)Google Scholar
  113. 113.
    Pomeranz, I., Reddy, S.M.: On the generation of small dictionaries for fault location. In: Proceedings of the 1992 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 1992, pp. 272–279. IEEE Computer Society Press, Los Alamitos (1992),, doi:10.1109/ICCAD.1992.279361Google Scholar
  114. 114.
    Pook, S., Gausemeier, J., Dorociak, R.: Securing the Reliability of Tomorrow’s Systems with Self-Optimization. In: Proceedings of the Reliability and Maintainability Symposium, Reno, NV, US (2012)Google Scholar
  115. 115.
    Popek, G.J., Goldberg, R.P.: Formal Requirements for Virtualizable Third Generation Architectures. Communications of the ACM 17(7), 412–421 (1974), doi:10.1145/361011.361073CrossRefzbMATHMathSciNetGoogle Scholar
  116. 116.
    Porrmann, M.: Adaptive Hardware Platforms for Self-Optimizing Mechatronic Systems. In: International Workshop on Computing in Heterogeneous, Autonomous ’N’ Goal-oriented Environments, DAC – Design Automation Conference (2012)Google Scholar
  117. 117.
    Porrmann, M., Hagemeyer, J., Pohl, C., Romoth, J., Strugholtz, M.: RAPTOR–A Scalable Platform for Rapid Prototyping and FPGA-based Cluster Computing, vol. 19. IOS Press (2010), doi:10.3233/978-1-60750-530-3-592Google Scholar
  118. 118.
    Pradhan, D.K. (ed.): Fault-tolerant computer system design. Prentice-Hall, Inc., Upper Saddle River (1996)Google Scholar
  119. 119.
    Priesterjahn, C., Heinzemann, C., Schäfer, W.: From Timed Automata to Timed Failure Propagation Graphs. In: Proceedings of the Fourth IEEE Workshop on Self-Organizing Real-time Systems (2013)Google Scholar
  120. 120.
    Priesterjahn, C., Heinzemann, C., Schäfer, W., Tichy, M.: Runtime Safety Analysis for Safe Reconfiguration. In: IEEE International Conference on Industrial Informatics Proceedings of the 3rd Workshop Self-X and Autonomous Control in Engineering Applications, Beijing, CN, July 25-27 (2012), doi:10.1109/INDIN.2012.6300900Google Scholar
  121. 121.
    Priesterjahn, C., Sondermann-Wölke, C., Tichy, M., Hölscher, C.: Component-based Hazard Analysis for Mechatronic Systems. In: Object/Component/Service-Oriented Real-Time Distributed Computing Workshops, IEEE International Symposium on Object/Component/Service-oriented Real-time Distributed Computing (ISORC), pp. 80–87 (2011), doi:10.1109/ISORCW.2011.19Google Scholar
  122. 122.
    Priesterjahn, C., Steenken, D., Tichy, M.: Component-based timed hazard analysis of self-healing systems. In: Proceedings of the 8th Workshop on Assurances for Self-Adaptive Systems, ASAS 2011, pp. 34–43. ACM, New York (2011), doi:10.1145/2024436.2024444Google Scholar
  123. 123.
    Priesterjahn, C., Steenken, D., Tichy, M.: Timed Hazard Analysis of Self-healing Systems. In: Cámara, J., de Lemos, R., Ghezzi, C., Lopes, A. (eds.) Assurances for Self-Adaptive Systems. LNCS, vol. 7740, pp. 112–151. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  124. 124.
    Priesterjahn, C., Tichy, M.: Modeling Safe Reconfiguration with the FUJABA Real-Time Tool Suite. In: Proceedings of the 7th International Fujaba Days (2009)Google Scholar
  125. 125.
    Qanadilo, M., Samara, S., Zhao, Y.: Accelerating Online Model Checking. In: Proceedings of the 6th Latin-American Symposium on Dependable Computing, LADC (2013), doi:10.1109/LADC.2013.20Google Scholar
  126. 126.
    RailCab – Neue Bahntechnik Paderborn: The Project Web Site, (accessed March 5, 2012)
  127. 127.
    Rao, B. (ed.): Handbook of Condition Monitoring. Elsevier (1996)Google Scholar
  128. 128.
    Reinold, P., Nachtigal, V., Trächtler, A.: An Advanced Electric Vehicle for the Development and Test of New Vehicle-Dynamics Control Strategies (2010), doi:10.3182/20100712-3-DE-2013.00172Google Scholar
  129. 129.
    Reutenauer, C.: The mathematics of Petri nets. Prentice-Hall, Inc., Upper Saddle River (1990)zbMATHGoogle Scholar
  130. 130.
    Richter, U., Mnif, M., Branke, J., Müller-Schloer, C., Schmeck, H.: Towards a Generic Observer/Controller Architecture for Organic Computing. In: Hochberger, C., Liskowsky, R. (eds.) Tagungsband zur 36. Jahrestagung der Gesellschaft für Informatik – Informatik für Menschen, Dresden, DE. LNI, vol. P-93, pp. 112–119. Bonner Köllen Verlag (2006)Google Scholar
  131. 131.
    Ringkamp, M., Ober-Blöbaum, S., Dellnitz, M., Schütze, O.: Handling High Dimensional Problems with Multi-Objective Continuation Methods via Successive Approximation of the Tangent Space. Engineering Optimization 44(9), 1117–1146 (2012), doi:10.1080/0305215X.2011.634407CrossRefMathSciNetGoogle Scholar
  132. 132.
    Röhs, M., Wehrheim, H.: Sichere Konfigurationsplanung selbst-adaptierender Systeme durch Model Checking. In: Gausemeier, J., Rammig, F., Schäfer, W., Trächtler, A. (eds.) Entwurf Mechatronischer Systeme. HNI-Verlagsschriftenreihe, vol. 272, pp. 253–265. Heinz Nixdorf Institute, University of Paderborn, Paderborn (2010)Google Scholar
  133. 133.
    Romaus, C., Bocker, J., Witting, K., Seifried, A., Znamenshchykov, O.: Optimal Energy Management for a Hybrid Energy Storage System Combining Batteries and Double Layer Capacitors. In: Proceedings of the Energy Conversion Congress and Exposition, San Jose, CA, US, pp. 1640–1647 (2009), doi:10.1109/ECCE.2009.5316428Google Scholar
  134. 134.
    Russel, S., Norvig, P.: Artificial Intelligence – A Modern Approach, 2nd edn., pp. 94–136. Prentice Hall (2003)Google Scholar
  135. 135.
    Schütze, O., Witting, K., Ober-Blöbaum, S., Dellnitz, M.: Set Oriented Methods for the Numerical Treatment of Multi-Objective Optimization Problems. In: Tantar, E., Tantar, A.-A., Bouvry, P., Del Moral, P., Legrand, P., Coello Coello, C.A., Schütze, O. (eds.) EVOLVE- A Bridge between Probability. SCI, vol. 447, pp. 185–218. Springer, Heidelberg (2013)Google Scholar
  136. 136.
    Serrestou, Y., Beroulle, V., Robach, C.: Functional Verification of RTL Designs Driven by Mutation Testing Metrics. In: Proceedings of the 10th Euromicro Conference on Digital System Design, Lebeck, DE, pp. 222–227 (2007), doi:10.1109/DSD.2007.4341472Google Scholar
  137. 137.
    Simani, S., Fantuzzi, C., Patton, R.J.: Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques. Springer, Heidelberg (2002)Google Scholar
  138. 138.
    Slayman, C.: JEDEC Standards on Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray Induced Soft Errors. In: Nicolaidis, M. (ed.) Soft Errors in Modern Electronic Systems. Frontiers in Electronic Testing, vol. 41, pp. 55–76. Springer, US (2011), doi:10.1007/978-1-4419-6993-4_3CrossRefGoogle Scholar
  139. 139.
    Smith, J.E., Nair, R.: The Architecture of Virtual Machines, vol. 38. IEEE Computer (2005), doi:10.1109/MC.2005.173Google Scholar
  140. 140.
    Sondermann-Wölke, C., Sextro, W.: Integration of Condition Monitoring in Self-Optimizing Function Modules Applied to the Active Railway Guidance Module. International Journal on Advances in Intelligent Systems 3(1&2), 65–74 (2010)Google Scholar
  141. 141.
    Sondermann-Wölke, C., Sextro, W., Reinold, P., Trächtler, A.: Zuverlässigkeitsorientierte Mehrzieloptimierung zur Aktorrekonfiguration eines X-by-wire-Fahrzeugs. In: 25. Tagung Technische Zuverlässigkeit (TTZ 2011) – Entwicklung und Betrieb zuverlässiger Produkte, Leonberg, DE. VDI-Berichte, vol. 2146, pp. 291–302. Düsseldorf (2011)Google Scholar
  142. 142.
    Sterpone, L., Violante, M.: Analysis of the robustness of the TMR architecture in SRAM-based FPGAs. IEEE Transactions on Nuclear Science 52(5), 1545–1549 (2005), doi:10.1109/TNS.2005.856543CrossRefGoogle Scholar
  143. 143.
    Tasiran, S., Qadeer, S.: Runtime Refinement Checking of Concurrent Data Structures. In: Proceedings of the 2004 Workshop on Runtime Verification (RV 2004), Barcelona, ES (2004), doi:10.1016/j.entcs.2004.01.028Google Scholar
  144. 144.
    Tichy, M., Klöpper, B.: Planning Self-Adaptation with Graph Transformations. In: Schürr, A., Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233, pp. 137–152. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  145. 145.
    Timmermann, R., Horenkamp, C., Dellnitz, M., Keßler, J.H., Trächtler, A.: Optimale Umschaltstrategien bei Aktorausfall mit Pfadverfolgungstechniken. In: Gausemeier, J., Rammig, F.J., Schäfer, W., Trächtler, A. (eds.) Tagungsband vom 9. Paderborner Workshop Entwurf mechatronischer Systeme. HNI-Verlagsschriftenreihe. Heinz Nixdorf Institute, University of Paderborn, Paderborn (2013)Google Scholar
  146. 146.
    Trächtler, A., Münch, E., Vöcking, H.: Iterative Learning and Self-Optimization Techniques for the Innovative Railcab-System. In: 32nd Annual Conference of the IEEE Industrial Electronics Society (IECON), Paris, FR, pp. 4683–4688 (2006), doi:10.1109/IECON.2006.347957Google Scholar
  147. 147.
    Tumer, I., Stone, R., Bell, D.: Requirements for a Failure Mode Taxonomy for Use in Conceptual Design. In: Proceedings of the International Conference on Engineering Design, Stockholm, SE (2003)Google Scholar
  148. 148.
    Verein Deutscher Ingenieure (VDI): VDI 2057:2002. Human exposure to mechanical vibrations. Technical Guideline (2002)Google Scholar
  149. 149.
    Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault tree handbook – NUREG-0492209. Tech. rep., U.S. Nuclear Regulatory Commission (1981)Google Scholar
  150. 150.
    Wilkinson, P., Kelly, T.: Functional Hazard Analysis for Highly Integrated Aerospace Systems. In: Proceedings of the Ground/Air Systems Seminar (1998), doi: Scholar
  151. 151.
    Witting, K.: Numerical Algorithms for the Treatment of Parametric Multiobjective Optimization Problems and Applications. In: HNI-Verlagsschriftenreihe. Heinz Nixdorf Institute, University of Paderborn, Paderborn (2011)Google Scholar
  152. 152.
    Witting, K., Ober-Blöbaum, S., Dellnitz, M.: A Variational Approach to Define Robustness for Parametric Multiobjective Optimization Problems. Journal of Global Optimization (2012), doi:10.1007/s10898-012-9972-6Google Scholar
  153. 153.
    XILINX: MicroBlaze Processor Reference Guide, V9.0 (2008)Google Scholar
  154. 154.
    Zhao, Y., Rammig, F.: Online Model Checking for Dependable Real-Time Systems. In: 15th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC), pp. 154–161. IEEE Computer Society, Shenzhen (2012), doi:10.1109/ISORC.2012.28Google Scholar
  155. 155.
    Zilberstein, S.: Using Anytime Algorithms in Intelligent Systems. AI Magazine 17(3), 73–83 (1996), doi: Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Product Engineering, Heinz Nixdorf InstituteUniversity of PaderbornPaderbornGermany

Personalised recommendations