Clustering and Modularity in Self-Organized Networks

  • Somwrita Sarkar
  • Peter A. Robinson
Part of the Emergence, Complexity and Computation book series (ECC, volume 9)


Many biological, artificial, and social systems are self-organized. Though an overarching, exhaustive definition of self-organization is elusive, there is general agreement on many of the properties that self-organized systems can be characterized by: they are global systems, composed of many, usually identical, micro level components. These components interact locally, while the system shows emergence of global dynamics not directly observable, measurable, quantified, or defined at the local level (Prokopenko 2009).


Adjacency Matrix Hierarchical Level Spectral Cluster Community Detection Hierarchical Organization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arenas, A., Díaz-Guilera, A., Pérez-Vicente, C.J.: Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 96(11), 114102 (2006)CrossRefGoogle Scholar
  2. Biggs, N.: Algebraic Graph Theory, 2nd edn. Cambridge University Press (1993)Google Scholar
  3. Chung, F.: Spectral Graph Theory. In: CBMS Regional Conference Series in Mathematics (1997)Google Scholar
  4. Cvetkovic, D., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Applications. Johann Ambrosius Barth Verlag (1995)Google Scholar
  5. Cvetkovic, D., Rowlinson, P., Simic, S.: Eigenspaces of Graphs. Encyclopedia of Mathematics and Its Applications, vol. 66. Cambridge University Press (1997)Google Scholar
  6. Cvetkovic, D., Rowlinson, P., Simic, S.: An introduction to the theory of graph spectra, London Mathematical Society Texts, vol. 75. Cambridge University Press (2010)Google Scholar
  7. de Aguiar, M.A.M., Bar-Yam, Y.: Spectral analysis and the dynamic response of complex networks. Phys. Rev. E 71(1), 016106 (2005)Google Scholar
  8. Farkas, I., Derényi, I., Barabási, A., Vicsek, T.: Spectra of “real-world” graphs: Beyond the semicircle law. Phys. Rev. E 64(2), 026704 (2001)Google Scholar
  9. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  10. Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. 104(1), 36–41 (2006)CrossRefGoogle Scholar
  11. Goh, K.-I., Kahng, B., Kim, D.: Spectra and eigenvectors of scale-free networks. Phys. Rev. E 64(5), 051903 (2001)Google Scholar
  12. Gray, R.T., Fung, C.K.C., Robinson, P.A.: Stability of random brain networks with excitatory and inhibitory connections. Neurocomp. 72, 1565–1574 (2009)CrossRefGoogle Scholar
  13. Kashtan, N., Alon, U.: Spontaneous evolution of modularity and network motifs. Proceedings of the National Academy of Sciences 102(39), 13773–13778 (2005)CrossRefGoogle Scholar
  14. Mehta, M.L.: Random Matrices, 3rd edn. Elsevier (2004)Google Scholar
  15. Mieghem, P.V.: Graph Spectra for Complex Networks. Cambridge University Press, Cambridge (2011)Google Scholar
  16. Newman, M.E.J.: Networks: An Introduction. Oxford University Press (2010)Google Scholar
  17. Pothen, A., Simon, H., Liou, K.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11, 430–452 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  18. Prokopenko, M.: Guided self-organization. HFSP Journal 3(5), 287–289 (2009)CrossRefGoogle Scholar
  19. Rajan, K., Abbott, L.F.: Eigenvalue spectra of random matrices for neural networks. Phys. Rev. Lett. 97, 188104 (2006)CrossRefGoogle Scholar
  20. Ravasz, E., Somera, A., Mongru, D., Oltvai, Z., Barabasi, A.: Hierarchical organization of modularity in metabolic networks. Science 297, 1551 (2002)CrossRefGoogle Scholar
  21. Robinson, P.A., Henderson, J.A., Matar, E., Riley, P., Gray, R.T.: Dynamical reconnection and stability constraints on cortical network architecture. Phys. Rev. Lett. 103, 108104 (2009)CrossRefGoogle Scholar
  22. Sarkar, S., Dong, A.: Characterizing modularity, hierarchy, and module interfacing in complex design systems. In: Proceedings of the American Society of Mechanical Engineers (ASME) 2011 International Design Engineering and Technical Conference and Computers and Information in Engineering Conference (DETC/CIE), pp. DETC2011–DETC47992. ASME Press, New York (2011a)Google Scholar
  23. Sarkar, S., Dong, A.: Community detection in graphs using singular value decomposition. Phys. Rev. E 83(4), 046114 (2011b)Google Scholar
  24. Sarkar, S., Dong, A., Gero, J.S.: Design optimization problem reformulation using singular value decomposition. Journal of Mechanical Design 131(8), 081006 (2009)Google Scholar
  25. Sarkar, S., Dong, A., Henderson, J.A., Robinson, P.A.: Spectral characterization of hierarchical modularity in product architectures. Journal of Mechanical Design (2013a) (accepted for publication)Google Scholar
  26. Sarkar, S., Henderson, J.A., Robinson, P.A.: Spectral characterization of hierarchical network modularity and limits of modularity detection. PLoS One 8(1), e54383 (2013b)Google Scholar
  27. Sosa, M.E., Eppinger, S.D., Rowles, C.M.: Identifying modular and integrative systems and their impact on design team interactions. Journal of Mechanical Design 125, 240–252 (2003)CrossRefGoogle Scholar
  28. Sosa, M.E., Eppinger, S.D., Rowles, C.M.: The misalignment of product architecture and organizational structure in complex product development. Management Science 50(12), 1674–1689 (2004)CrossRefGoogle Scholar
  29. Sporns, O.: Networks of the brain. MIT Press (2011)Google Scholar
  30. Wigner, E.P.: Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 62(3), 548–564 (1955)zbMATHMathSciNetCrossRefGoogle Scholar
  31. Wigner, E.P.: Characteristic vectors of bordered matrices with infinite dimensions ii. Ann. Math. 65(2), 203–207 (1957)zbMATHMathSciNetCrossRefGoogle Scholar
  32. Wigner, E.P.: On the distribution of the roots of certain symmetric matrices. Ann. Math. 67(2), 325–327 (1958)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Somwrita Sarkar
    • 1
    • 2
  • Peter A. Robinson
    • 2
    • 3
  1. 1.Design Lab, Faculty of Architecture, Design, and PlanningUniversity of SydneySydneyAustralia
  2. 2.Complex Systems Group, School of PhysicsUniversity of SydneySydneyAustralia
  3. 3.Brain Dyanmics Center, Sydney Medical SchoolUniversity of SydneyWestmeadAustralia

Personalised recommendations