Measuring Information Dynamics in Swarms

  • Jennifer M. MillerEmail author
  • X. Rosalind Wang
  • Joseph T. Lizier
  • Mikhail Prokopenko
  • Louis F. Rossi
Part of the Emergence, Complexity and Computation book series (ECC, volume 9)


We propose a novel, information theoretic characterization of dynamics within swarms, through explicitly measuring the extent of collective communications and tracing collectivememory. These elements of distributed computation provide complementary views into the capacity for swarm coherence and reorganization. The approach deals with both global and local information dynamics ultimately discovering diverse ways in which an individual’s location within the group is related to its information processing role.


Collective Memory Transfer Entropy Collective Communication Speed Model Information Cascade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aoki, I.: A simulation study on the schooling mechanism in fish. Bulletin of the Japanese Society of Scientific Fisheries 48, 1081–1088 (1982)CrossRefGoogle Scholar
  2. Ay, N., Bernigau, H., Der, R., Prokopenko, M.: Information driven self-organization: The dynamical system approach to autonomous robot behavior. Theory in Biosciences 131(3), 161–179 (2011)CrossRefGoogle Scholar
  3. Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton University Press (2003)Google Scholar
  4. Ceguerra, R.V., Lizier, J.T., Zomaya, A.Y.: Information storage and transfer in the synchronization process in locally-connected networks. In: 2011 IEEE Symposium on Artificial Life (ALIFE), pp. 54–61. IEEE (2011)Google Scholar
  5. Couzin, I.: Collective minds. Nature 445(7129), 715–715 (2007)CrossRefGoogle Scholar
  6. Couzin, I.D.: Collective cognition in animal groups. Trends in Cognitive Sciences 13(11), 36–43 (2009)CrossRefGoogle Scholar
  7. Couzin, I.D., James, R., Croft, D.P., Krause, J.: Social organization and information transfer in schooling fishes. In: Brown, C., Laland, K., Krause, J. (eds.) Fish and Aquatic Resources, pp. 166–185. Blackwell Publishing (2006)Google Scholar
  8. Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.: Collective memory and spatial sorting in animal groups. Journal of Theoretical Biology 218, 1–11 (2002)MathSciNetCrossRefGoogle Scholar
  9. Dall, S.R.X., Giraldeau, L.-A., Olsson, O., McNamara, J.M., Stephens, D.W.: Information and its use by animals in evolutionary ecology. Trends in Ecology & Evolution 20(4), 187–193 (2005)CrossRefGoogle Scholar
  10. Galef, J. B.G., Giraldeau, L.-A.: Social influences on foraging in vertebrates: causal mechanisms and adaptive functions. Animal Behaviour 61(1), 3–15 (2001)CrossRefGoogle Scholar
  11. Giraldeau, L.-A., Valone, T.J., Templeton, J.J.: Potential disadvantages of using socially acquired information. Philosophical Transactions of the Royal Society London B Biological Sciences 357(1427), 1559–1566 (2002)CrossRefGoogle Scholar
  12. Huth, A., Wissel, C.: The simulation of the movement of fish schools. Journal of Theoretical Biology 156, 365–385 (1992)CrossRefGoogle Scholar
  13. Kastberger, G., Schmelzer, E., Kranner, I.: Social waves in giant honeybees repel hornets. PLoS One 3(9), e3141 (2008)Google Scholar
  14. Katz, Y., Tunstrøm, K., Ioannou, C.C., Huepeb, C., Couzin, I.D.: Inferring the structure and dynamics of interactions in schooling fish. Proceedings of the National Academy of Sciences 108(46), 18720–18725 (2011)CrossRefGoogle Scholar
  15. Lissaman, P.B.S., Shollenberger, C.A.: Formation flight of birds. Science 168(3934), 1003–1005 (1970)CrossRefGoogle Scholar
  16. Lizier, J.T.: The Local Information Dynamics of Distributed Computation in Complex Systems. Springer Theses. Springer, Heidelberg (2013)zbMATHCrossRefGoogle Scholar
  17. Lizier, J.T., Prokopenko, M., Zomaya, A.Y.: Detecting non-trivial computation in complex dynamics. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 895–904. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. Lizier, J.T., Prokopenko, M., Zomaya, A.Y.: The information dynamics of phase transitions in random boolean networks. In: Bullock, S., Noble, J., Watson, R., Bedau, M.A. (eds.) Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems (ALife XI), Winchester, UK, pp. 374–381. MIT Press, Cambridge (2008a)Google Scholar
  19. Lizier, J.T., Prokopenko, M., Zomaya, A.Y.: Local information transfer as a spatiotemporal filter for complex systems. Physical Review E 77(2), 026110 (2008b)Google Scholar
  20. Lizier, J.T., Prokopenko, M., Zomaya, A.Y.: Information modification and particle collision in distributed computation. Chaos 20(3), 037109 (2010)Google Scholar
  21. Lizier, J.T., Prokopenko, M., Zomaya, A.Y.: Local measures of information storage in complex distributed computation. Information Sciences 208, 39–54 (2012)CrossRefGoogle Scholar
  22. Lukeman, R., Li, Y.-X., Edelstein-Keshet, L.: Inferring individual rules from collective behavior. Proceedings of the National Academy of Sciences of the United States of America 107(28), 12576–12580 (2010)CrossRefGoogle Scholar
  23. Mathews, G., Durrant-Whyte, H.F., Prokopenko, M.: Measuring global behaviour of multi-agent systems from pair-wise mutual information. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNAI), vol. 3684, pp. 587–594. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. Miller, J., Kolpas, A., Juchem Neto, J., Rossi, L.: A continuum three-zone model for swarms. Bulletin of Mathematical Biology 74(3), 1–26 (2011)MathSciNetGoogle Scholar
  25. Parrish, J.K., Edelstein-Keshet, L.: Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284(5411), 99–101 (1999)CrossRefGoogle Scholar
  26. Parrish, J.K., Viscido, S.V., Grünbaum, D.: Self-organized fish schools: An examination of emergent properties. The Biological Bulletin 202, 296–305 (2002)CrossRefGoogle Scholar
  27. Partridge, B.L.: The structure and function of fish schools. Scientific American 246(6), 114–123 (1982)CrossRefGoogle Scholar
  28. Potts, W.K.: The chorus-line hypothesis of manoeuvre coordination in avian flocks. Nature 309, 344–345 (1984)CrossRefGoogle Scholar
  29. Procaccini, A., Orlandi, A., Cavagna, A., Giardina, I., Zoratto, F., Santucci, D., Chiarotti, F., Hemelrijk, C.K., Alleva, E., Parisi, G., Carere, C.: Propagating waves in starling, sturnus vulgaris, flocks under predation. Animal Behaviour 82(4), 759–765 (2011)CrossRefGoogle Scholar
  30. Prokopenko, M.: Information dynamics at the edge of chaos: Measures, examples, and principles. In: 2013 IEEE Symposium on Artificial Life (ALIFE), pp. 148–152. IEEE (2013)Google Scholar
  31. Prokopenko, M., Boschetti, F., Ryan, A.J.: An information-theoretic primer on complexity, self-organization, and emergence. Complexity 15(1), 11–28 (2009)MathSciNetCrossRefGoogle Scholar
  32. Prokopenko, M., Lizier, J.T., Price, D.C.: On thermodynamic interpretation of transfer entropy. Entropy 15(2), 524–543 (2013)MathSciNetCrossRefGoogle Scholar
  33. Radakov, D.V.: Schooling in the ecology of fish. John Wiley & Sons Inc, New Year (1973), Translated from Russian by Mills, H.Google Scholar
  34. Schreiber, T.: Measuring information transfer. Physical Review Letters 85(2), 461–464 (2000)CrossRefGoogle Scholar
  35. Schrödinger, E.: What is life? The Physical Aspect of the Living Cell. Cambridge University Press (1944)Google Scholar
  36. Sinclair, A.R.E., Norton-Griffiths, M. (eds.): Serengeti: Dynamics of an Ecosystem. University of Chicago Press (1979)Google Scholar
  37. Sumpter, D., Buhl, J., Biro, D., Couzin, I.: Information transfer in moving animal groups. Theory in Biosciences 127(2), 177–186 (2008)CrossRefGoogle Scholar
  38. Treherne, J.E., Foster, W.A.: Group transmission of predator avoidance behaviour in a marine insect: The Trafalgar effect. Animal Behaviour 29(3), 911–917 (1981)CrossRefGoogle Scholar
  39. Uvarov, B.P.: Grasshoppers and Locusts. Imperial Bureau of Entomology (1928)Google Scholar
  40. Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel Type of Phase Transition in a System of Self-Driven Particles. Physical Review Letters 75, 1226–1229 (1995)CrossRefGoogle Scholar
  41. Wang, X.R., Miller, J.M., Lizier, J.T., Prokopenko, M., Rossi, L.F., 2011, E.C.A.L.: Measuring information storage and transfer in swarms. In: Proceedings of the Eleventh European Conference on the Synthesis and Simulation of Living Systems (ECAL 2011), pp. 838–845. MIT Press, Paris (2011)Google Scholar
  42. Wang, X.R., Miller, J.M., Lizier, J.T., Prokopenko, M., Rossi, L.F.: Quantifying and tracing information cascades in swarms. PLoS One 7(7), e40084 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jennifer M. Miller
    • 1
    Email author
  • X. Rosalind Wang
    • 2
  • Joseph T. Lizier
    • 2
    • 5
    • 6
  • Mikhail Prokopenko
    • 2
    • 3
    • 4
  • Louis F. Rossi
    • 1
  1. 1.Department of Mathematical SciencesUniversity of DelawareNewarkUSA
  2. 2.CSIRO Computational InformaticsEppingAustralia
  3. 3.School of PhysicsThe University of SydneySydneyAustralia
  4. 4.Department of ComputingMacquarie UniversityNorth RydeAustralia
  5. 5.School of Information TechnologiesThe University of SydneySydneyAustralia
  6. 6.Max Planck Institute for Mathematics in the SciencesLeipzigGermany

Personalised recommendations