Advertisement

Establishing knowledge spaces by systematical problem construction

  • D. Albert
  • T. Held

Abstract

Procedures which are to test a subject’s knowledge concerning a specific domain obviously require (in addition to other prerequisites) a set of problems.

Keywords

Linear Order Lexicographic Order Knowledge State Hasse Diagram Knowledge Assessment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, D. (1989) Knowledge assessment: choice heuristics as strategies for constructing questions and problems. Paper read at the 20th European Mathematical Psychology Group Meeting, Nijmegen.Google Scholar
  2. Albert, D. (1991) Principles of problem construction for the assessment of knowledge. Paper read at the 2nd European Congress of Psychology, Budapest.Google Scholar
  3. Albert, D., Schrepp, M., and Held, T. (1993). Construction of knowledge spaces for problem solving in chess. In G. Fischer, and D. Laming (Eds.), Contributions to Mathematical Psychology, Psychometrics, and Methodology. New York: Springer.Google Scholar
  4. Aschenbrenner, K. M. (1980). Eingipflige Bevorzugung: Aufgabencharakteristika und Entscheidungsheuristiken als Bedingungen ihrer Entstehung. [Single-peaked preference: problem characteristics and decision heuristics as conditions for its emergence.] Freiburg: Hochschulverlag.Google Scholar
  5. Aschenbrenner, K. M. (1981). Efficient Sets, Decision Heuristics, and Single-Peaked Preferences. Journal of Mathematical Psychology, 23 (3), 227–256.CrossRefGoogle Scholar
  6. Birkhoff, G. (1937). Rings of sets. Duke Mathematical Journal, 3, 443–454CrossRefGoogle Scholar
  7. Birkhoff, G. (1973). Lattice Theory, 3rd edn. Providence: American Mathematical Society.Google Scholar
  8. Chéron, A. (1960). Lehr-und Handbuch der Endspiele Bd. 1. [Text-and handbook of endgames Vol. 1.] Berlin: S. Engelhardt-Verlag.Google Scholar
  9. Davey, B. A., and Priestley, H. A. (1990). Introduction to lattices and orders. Cambridge: Cambridge University Press.Google Scholar
  10. Doignon, J.-P., and Falmagne, J.-C. (1985). Spaces for the assessment of knowledge. International Journal of Man-Machine Studies, 23, 175–196.CrossRefGoogle Scholar
  11. Falmagne, J.-C., Koppen, M., Johanuesen, L., Villano, M., and Doignon, J.-P. (1990). Introduction to knowledge spaces: how to build, test and search them. Psychological Review, 97 (2), 201–224.CrossRefGoogle Scholar
  12. Fishburn, P. C. (1972). Mathematics of decision theory. Princeton: Princeton University Press.Google Scholar
  13. Fishburn, P. C. (1974). Lexicographic orders, utilities and decision rules: a survey. Management science, 20, 1442–1471.CrossRefGoogle Scholar
  14. Geisdorf, H. (1984). Der Schachfreund, Bd. 1: Auf den Flügeln der Kunst. [The Chess buff.] Mannheim: Selbstverlag H. Geisdorf.Google Scholar
  15. de Groot, A.D. (1965). Thought and choice in chess. The Hague: Mouton and Co.Google Scholar
  16. Guttman, L.A. (1947). A basis for scaling qualitative data. American Sociological Review, 9, 139–150.CrossRefGoogle Scholar
  17. Guttman, L.A. (1950). The basis for scalogram analysis. In S.A. Stouffer, L.A. Guttman, E. A. Suchuran, P.F. Lazarsfeld, S.A. Star, and J. A. Clausen (Eds.), Volume 4: Measurement and prediction (pp. 60–90 ). London: Princeton University Press.Google Scholar
  18. Held, T. (1992). Systematische Konstruktion und Ordnung von Aufgabenmengen zur elementaren Wahrscheinlichkeitsrechnung. [Systematical construction and ordering of problem sets of elementary stochastics.] Paper read at the 34th Tagung experimentell arbeitender Psychologen, Osnabrück, FRG, 12.-16. April 1992.Google Scholar
  19. Held, T. (1993). Establishment and empirical validation of problem structures based on domain specific skills and textual properties - A contribution to the `Theory of Knowledge Spaces’. Dissertation Universität Heidelberg.Google Scholar
  20. Huber, O. (1982). Entscheiden als Problemlösen. [Deciding as problem solving.] Bern: Huber.Google Scholar
  21. Korossy, K. (1990). Zum Problem der eindeutigen Lösbarkeit bei linear-rekursiven Zahlenfolgen-Aufgaben. [On the problem of unique solvability with linear-recursive number series.] Arbeitsbericht Universität Heidelberg.Google Scholar
  22. Korossy, K. (1993). Modellierung von Wissensstrukturen in Hinblick auf eine effiziente Wissensdiagnose und Wissensvermittlung. [Modeling knowledge structures with regard to efficient knowledge diagnosis and knowledge impartment.] Dissertation Universität Heidelberg.Google Scholar
  23. Krause, B. (1985). Zum Erkennen rekursiver Regularitäten. [Concerning detection of recursive regularities.] Zeitschrift far Psychologie, 193, 71–86.Google Scholar
  24. Lukas, J. (1990). Algorithmen zur “Berechnung bestimmter Eigenschaften von Relationen und eine Anwendung auf die Untersuchung von Wissensstrukturen”. [Algorithms for “computation of certain properties of relations and an application to the investigation of knowledge structures.] Arbeitsbericht Universität Heidelberg.Google Scholar
  25. Lukas, J. (1991). Knowledge structures and information systems. Paper read at the 22nd European Mathematical Psychology Group Meeting, Vienna.Google Scholar
  26. Lukas, J., and Micka, R. (1993) Zur Diagnose von Wissen aber einfache Schachendspiele: Formale Theorie und empirische Ergebnisse. [Diagnosis of knowledge about simple chess endgames: formal theory and empirical results.] Paper read at the 35th Tagung experimentell arbeitender Psychologen, Trier, FRG, 4. 8. April 1993.Google Scholar
  27. Maiselis, I. L., and Judowitsch, M. M. (1966). Lehrbuch des Schachspiels. [Textbook of chess endgame.] Berlin: Sportverlag.Google Scholar
  28. Speckmann, W. (1958). Strategie im Schachproblem. [Strategy in chess problem.] Berlin: de Gruyter.Google Scholar
  29. Svenson, O. (1979). Process description of decision making Organizational Behavior and Human Performance, 23, 86–112.CrossRefGoogle Scholar
  30. Tversky, A. (1969). Intransitivity of preferences. Psychological Review, 76, 31–48.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • D. Albert
    • 1
  • T. Held
    • 2
  1. 1.Institut für PsychologieKarl-Franzens-Universität GrazGrazAustria
  2. 2.Psychologisches InstitutUniversität HeidelbergHeidelbergGermany

Personalised recommendations