Advertisement

The Movement of Fish Schools: A Simulation Model

  • Andreas Huth
  • Christian Wissel
Part of the Lecture Notes in Biomathematics book series (LNBM, volume 89)

Abstract

Fish schools represent a biological form of self organization (synergetics): Fish don’t need a leader or external stimuli for their school organization.

With the help of computer simulations we investigate the individual behaviour patterns which give rise to the self-organized movement of fish schools. Following the biology we modelled several basic behaviour patterns for the single fish in the school: attraction, repulsion, parallel orientation.

Connecting these patterns with an averaging concept for the mixing of the influences of fish’s neighbours, we find simulated fish schools with the typical characteristics of real fish schools: a high degree of parallel orientation and a strong cohesion. Moreovers the nearest neighbour distance distribution of our model fish school is found to agree with that of real schools.

Keywords

Parallel Orientation Fish Group Fish School Jack Mackerel Strong Cohesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoki I. (1980) An analysis of the schooling behaviour of fish: Internal organization and communication process. Bull. Ocean. Res. Inst. No.12, TokyoGoogle Scholar
  2. Aoki I. (1982) A simulation study on the schooling mechanism in fish. Bull.Jap.Soc.Sci.Fish. 48: 1081–1088CrossRefGoogle Scholar
  3. Aoki I. (1984) Internal dynamics of fish schools in relation to inter-fish distance. Bull.Jap.Soc.of Sci.Fisheries 50(5): 751–758CrossRefGoogle Scholar
  4. Aoki I., Inagaki T., Long L.V. (1986) Measurements of the 3-D-structure of free-swimming pelagic fish schools in a natural environment. Bull.Jap.Soc.of Sci.Fisheries 52(12): 2069–2078CrossRefGoogle Scholar
  5. Baichen J.G. (1975) Mathematical modelling of fish behaviour. Proc.IFAC 6th World Congr. (International Federation of automatic control) Paper 54.1Google Scholar
  6. Balchen J.G.(1976) Principles of migration in fishes. SINTEF Rapports STF 48 A76045 (Selskapet for industriell og tekmisk forskming ved norges tekniska hogskole)Google Scholar
  7. Breder C. M. Jr. (1951) Studies on the structure of fish schools. Bull.of Amer.Museum of Natural History 98: 3–27Google Scholar
  8. Breder C.M.Jr. (1959) Studies on social groupings in fishes. Bull.of Amer.Museum of Natural History 117: 395–481Google Scholar
  9. Bone Q., Marshall N.B.(1985) Sinnesorgane der Fische, (insbes: 9.3 Sehen und Leuchten, 9.2 Elektrorezeptoren und elektr. Organe) in “Biologie der Fische” StuttgartGoogle Scholar
  10. Hunter J.R. (1966) Procedure for analysis of schooling behaviour. Journal Fish.Res.Bd.Canada 23(4): 547–562CrossRefGoogle Scholar
  11. Keenleyside M.H.A. (1955) Some aspects of the schooling behaviour. Behaviour (Leiden) 8: 183–247CrossRefGoogle Scholar
  12. Inagaki T., Sakamoto W., Kuroki T. (1976) Studies on the schooling behaviour on fish II: Mathematical modeling of schooling form depending on the intensity of mutual force between individuals. Bull.Jap.Soc.of Sci.fisheries 42(3): 256–270Google Scholar
  13. Okubo A. (1980) ‘The dynamics of animal grouping’ in: Diffusion and ecological problems: Mathematical models. Springer p.110–131Google Scholar
  14. Olst J.C., Hunter J.R. (1970) Some aspects of the organization of fish schools. J.Fish.Res.Board Canad. 27: 1225–1238CrossRefGoogle Scholar
  15. Partridge B.L. (1981) Internal dynamics and the interrelations of fish schools. J.Comp.Physiol. 144: 313–325CrossRefGoogle Scholar
  16. Partridge B.L., Pitcher T.J., Cullen J.M., Wilson J. (1980a) The 3-D structure of fish schools. Beh.Ecol.Sociobiol. 6: 277–288CrossRefGoogle Scholar
  17. Partridge B.L., Pitcher T.J. (1980b) The Sensory Basis of Fish Schools: Relative Role of Lateral Line and Vision. 1980, J.Comp.Physiol. 135: 315–325CrossRefGoogle Scholar
  18. Pitcher T.J., Partridge B.L., Wardle C.S. (1976) A blind fish can school. Science 194: 963–965CrossRefGoogle Scholar
  19. Pitcher T.J. (1979) Sensory information and the organization of a behaviour in a schooling cyprint fish. Anim.Behav. 27: p.126–149CrossRefGoogle Scholar
  20. Radakov D.V. (1971) Schooling in the ecology of fish. Halsted Press, New YorkGoogle Scholar
  21. Shaw E. (1970) ‘Schooling in fishes: critique and review’ in: Aronson L.(ed) “Development and evolution of behaviour”, Freeman, San FranciscoGoogle Scholar
  22. Tembrock G. (1983) ‘Fische: Biosozialverhalten’ in: Spezielle Verhaltensökologie. Bd.II p.584–594, StuttgartGoogle Scholar
  23. Alt W. (1985 a) Degenerate diffusion equations with drift functionals modelling aggregation. Nonlinear Analysis, Theor. Math. Appl. 9: 811–836MathSciNetCrossRefzbMATHGoogle Scholar
  24. Alt W. (1985 b) Models for mutual attraction of motile individuals. Lecture Notes in Biomathematics Vol 57: 33–38MathSciNetCrossRefGoogle Scholar
  25. Alt W. and Lauffenburger D.A. (1987) Transient behavior of a Chemotaxis system modelling certain types of tissue inflammation. J. Math. Biol. 24: 691–722MathSciNetCrossRefzbMATHGoogle Scholar
  26. Britton N.F. (1986) Reaction diffusion equations and their applications to biology. Academic Press NY.zbMATHGoogle Scholar
  27. Clark C.W. and Mangel M. (1985) The evolutionary advantages of group foraging. Theor. Pop. Biol. 30: 45–75MathSciNetCrossRefGoogle Scholar
  28. Deneubourg J.L. and Goss S. (1989) Collective patterns and decision making. Ethology, Ecology, and Evolution 1: 295–311CrossRefGoogle Scholar
  29. Edelstein-Keshet L. and Ermentrout B. (1989) Models for branching networks in two dimensions. SIAM J. Appl. Math. 49 Nr.4: 1136–1157MathSciNetCrossRefzbMATHGoogle Scholar
  30. Fisher R.A. (1937) The wave of advance of advantageous genes. Ann. Eugen. (London) 7: 355–369CrossRefGoogle Scholar
  31. Focardi S. and Toso S. (1987) Foraging and social behavior of ungulates: proposals for a mathematical model, pp. 295–304. In: (P. Ellen and C. Thinus-Bland eds.) Cognitive processes and spatial orientation in animal and man. Vol 1. Martinus Nijhoff Publishers, BostonCrossRefGoogle Scholar
  32. Gierer A. and Meinhardt H. (1972) A theory of biological pattern formation. Kybernetik, 12: 30–39CrossRefGoogle Scholar
  33. Goldbeter A. (1989) Cell to Cell Signalling: From Experiments to Theoretical Models. Academic Press, NY.Google Scholar
  34. Greenberg J.M. and Alt W. (1987) Stability results for a diffusion equation with functional drift approximating a Chemotaxis model. Trans. AMS 300: 235–258MathSciNetCrossRefzbMATHGoogle Scholar
  35. Gurtin M.E. and MacCamy R.C. (1977) On the diffusion of biological populations. Math. Biosci. 33: 35–49MathSciNetCrossRefzbMATHGoogle Scholar
  36. Hamilton W.D. (1971) Geometry of the selfish herd. J. Theor. Biol. 31: 295–311CrossRefGoogle Scholar
  37. Hoffman W., Heinemann D. and Wiens J. (1981) The ecology of seabirds feeding flocks in Alaska. Auk. 98: 437–456Google Scholar
  38. Jaeger W. and Murray J.D., eds. (1984) Modelling Patterns in Space and Time. Proceedings of a Workshop (Heidelberg 1983), Springer-Verlag, Lect. Notes in Biomath. Vol.55 Springer, NY.Google Scholar
  39. Kareiva P.M. (1983) Local movement in herbivorous insects: applying a passive diffusion model to mark-recapture field experiments. Oecologia (Berlin) 57: 322–327CrossRefGoogle Scholar
  40. Keller E.F. and Segel L.A. (1970) Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26: 399–415CrossRefGoogle Scholar
  41. Kolmogorov A., Petrovsky I. and Piscunov (1937) Etude de l’equation de la diffusion avec croissance de la quantite a de la matiere et son application a un probleme biologique. Bull. Univ. Moscou. Ser. Intern. Sec Al, 6: 1–25Google Scholar
  42. Lauffenburger D.A., Grady M. and Keller K.H. (1984) A hypothesis for approaching swarms of myxobacteria. J. Theor. Biol. 110: 257–274CrossRefGoogle Scholar
  43. Levin S.A. (1986 a) Ecological and evolutionary aspects of dispersal. In: Teramoto and Yamaguti, eds. (see below) pp. 80–87Google Scholar
  44. Levin S.A. (1986 b) Random walk models of movement and their implications. In: (T. Hallam and S.A. Levin eds.) Mathematical Ecology: An Introduction. Springer, NY.Google Scholar
  45. Meinhardt H. (1982) Models of Biological Pattern Formation. Acad.Press, LondonGoogle Scholar
  46. Mimura M. and Murray J.D. (1978) On the diffusive predator-prey model which exhibits patchiness. J. Theor. Biol. 75: 249–262MathSciNetCrossRefGoogle Scholar
  47. Mimura M. and Takigawa S. (1987) A spatially aggregating population model involving site-distributed dynamics. In: Teramoto and Yamaguti, eds. (see below)Google Scholar
  48. Nagai T. and Mimura M. (1983) Some degenerate diffusion equations related to population dynamics. J. Math. Soc. Japan 35: 539–562MathSciNetCrossRefzbMATHGoogle Scholar
  49. Okubo A. (1980) Diffusion and Ecological Problems. Mathematical Models. Springer, NY.zbMATHGoogle Scholar
  50. Okubo A. (1986) Dynamical aspects of animal grouping: swarms, schools, flocks, and herds. Adv. in Biophys. 22: 1–94Google Scholar
  51. Oster G.F., Murray J.D. and Harris A.K. (1983) Mechanical aspects of mesenchymal morphogenesis. J. Embryol. Exp. Morphol. 78: 83–125Google Scholar
  52. Ricciardi L.M., ed. (1988) Biomathematics and Related Computational Problems. Kluwer Acad. Publ., DordrechtzbMATHGoogle Scholar
  53. Segel L.A. and Jackson J.L. (1972) Dissipative structure. An explanation and an ecological example. J. Theor. Biol. 37: 545–559CrossRefGoogle Scholar
  54. Shigesada N. (1980) Spatial distribution of dispersing animals. J.Math.Biol. 9: 85–96MathSciNetCrossRefzbMATHGoogle Scholar
  55. Sinclair A.R.E. (1977) The African buffalo. Univ. of Chicago PressGoogle Scholar
  56. Skellam J.G. (1951) Random dispersal in theoretical populations. Biometrika 38: 196–218MathSciNetzbMATHGoogle Scholar
  57. Spieser D. (1989) Behavioquant. Software package for movement analysis. Ges. Strahlen-und Umweltforschung, MünchenGoogle Scholar
  58. Thompson W.A., Vertinsky I. and Krebs J.R. (1974) The survival value of flocking in birds: a simulation model. J. Animal Ecol. 43: 785–820CrossRefGoogle Scholar
  59. Thurston G., Jaggi B. and Palcic B. (1988) Measurement of cell motility and morphology with an automated microscope system. Cytometry 9: 411–417CrossRefGoogle Scholar
  60. Teramoto E. and Seno H. (1988) Modelling of biological aggregation patterns. In: Ricciardi, ed. (see above) pp. 409–419Google Scholar
  61. Teramoto E. and Yamaguti M., eds. (1986) Mathematical Topics in Population Biology, Morphogenesis, and Neurosciences. Lect. Notes in Biomath. Vol. 71. Springer, NY.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Andreas Huth
    • 1
  • Christian Wissel
    • 1
  1. 1.Fachbereiche Physik und BiologieUniversität MarburgMarburgGermany

Personalised recommendations