Advertisement

Self-Organizing Neural Networks for Visualisation and Classification

  • A. Ultsch
Part of the Studies in Classification, Data Analysis and Knowledge Organization book series (STUDIES CLASS)

Abstract

This paper presents the usage of an artificial neural network, Kohonen’s self organizing feature map, for visualisation and classification of high dimensional data. Through a learning process, this neural network creates a mapping from a N-dimensional space to a two-dimensional plane of units (neurons). This mapping is known to preserve topological relations of the N-dimensional space. A specially developed technique, called U-matrix method has been developed in order to detect nonlinearities in the resulting mapping. This method can be used to visualize structures of the N-dimensional space. Boundaries between different subsets of input data can be detectet. This allows to use this method for a clustering of the data. New data can be classified in an associative way. It has been demonstrated, that the method can be used also for knowledge acquisition and exploratory data analysis purposes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grossberg, S. (1987), Competitive Learning: From Adaptive Activation to Adaptive Resonance, Cognitive Science, 17, 23–63.CrossRefGoogle Scholar
  2. Kohonen, T. (1982), Clustering, Taxonomy, and Topological Maps of Patterns, in: Lang, M. (Ed.), Proceedings of the Sixth International Conference on Pattern Recognition, Silver Spring, MD, IEEE Computer Society Press, 114–128.Google Scholar
  3. Ritter, H., Martinez, T., Schulten, K. (1990), Neuronale Netze, Addison Wesley.Google Scholar
  4. Rumelhart, D.E., McClelland, J.L. (1989), Parallel Distributed Processing: Explorations in the Microstructures of Cognition, Volume 1: Foundations, MIT Press, Cambridge.Google Scholar
  5. Ultsch, A. (1991), Konnektionistische Modelle und ihre Integration mit wissensbasierten Systemen, Habilitationsschrift, Univ. Dortmund.Google Scholar
  6. Ultsch, A. (1991a), The Integration of Neuronal Networks with Expert Systems, Proceedings Workshop on Industrial Applications of Neural Networks, Ascona, Vol III, 3–7.Google Scholar
  7. Ultsch, A., Palm, G., Rückert, U. (1991a), Wissensverarbeitung in neuronaler Architektur, in: Brauer, Hernandez (Eds.): Verteilte künstliche Intelligenz und kooperatives Arbeiten, GI-Kongress, München, 508–518.Google Scholar
  8. Ultsch, A., Hannuschka, R., Hartmann, U., Mandischer, M., Weber, V. (1991b), Optimizing Logical Proofs with Connectionist Networks, Proc. Intl. Conf. Artificial Neural Networks, Vol I, Helsinki, 585–590.Google Scholar
  9. Ultsch, A., Halmans,G., Mantyk, R. (1991c), A Connectionist Knowledge Acquisition Tool: Concat, Proc. International Workshop on Artificial Intelligence and Statistics, January 2–5, Ft. Lauderdale.Google Scholar
  10. Ultsch, A., Halmans, G. (1991), Data Normalization with Self-Organizing Feature Maps, Proc. Intl. Joint Conf. Neural Networks, Seattle, Vol I, 403–407.Google Scholar
  11. Ultsch, A., Halmans, G. (1991a), Neuronale Netze zur Unterstützung der Umweltforschung, Symp. Computer Science for Environmental Protection, Munich.Google Scholar
  12. Ultsch, A., Panda, PG. (1991), Die Kopplung konnektionistischer Modelle mit wissensbasierten Systemen, Tagungsband Expertensystemtage, Dortmund, VDI Verlag, 74–94.Google Scholar
  13. Ultsch, A., Siemon, H.P. (1990), Kohonen’s Self Organizing Feature Maps for Exploratory Data Analysis, Proc. Intern. Neural Networks, Kluwer Academic Press, Paris, 305–308.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1993

Authors and Affiliations

  • A. Ultsch
    • 1
  1. 1.Department of Computer ScienceUniversity of DortmundDortmund 50Germany

Personalised recommendations