Ion Cyclotron Resonance Spectrometry II pp 119-139

Part of the Lecture Notes in Chemistry book series (LNC, volume 31)

Gas-Phase Atomic Metal Cations. Ligand Binding Energies, Oxidation Chemistry and Catalysis

  • Manfred M. Kappes
  • Ralph H. Staley

Abstract

Ion cyclotron resonance (ICR) spectroscopy with a pulsed laser volatilization/ ionization source of atomic metal cations has recently been applied to studies of the reactions of gas-phase metal ions with neutral molecules 11,2]. Initial results from this laboratory have included a variety of mechanistic studies [1–4] as well as measurements of gas-phase ligand binding energies for a number of different metal cations [5–9]. These mechanistic and thermodynamic studies yield data which is useful in developing models for understanding molecular interactions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.W. Jones, R.H. Staley, J. Am. Chem. Soc., 102 (1980) 3794.CrossRefGoogle Scholar
  2. 2.
    J.S. Uppal, R.H. Staley, J. Am. Chem. Soc. 102 (1980) 4144.CrossRefGoogle Scholar
  3. 3.
    M.M. Kappes, R.H. Staley, J. Am. Chem. Soc. 103 (1981) 1286.CrossRefGoogle Scholar
  4. 4.
    M.M. Kappes, R.H. Staley, J. Phys. Chem. 85 (1981) 942.CrossRefGoogle Scholar
  5. 5.
    J.S. Uppal, R.H. Staley, J. Am. Chem. Soc., in press.Google Scholar
  6. 6.
    J.S. Uppal, R.H. Staley, J. Am. Chem. Soc., in press.Google Scholar
  7. 7.
    R.W. Jones, R.H. Staley, J. Am. Chem. Soc., in press.Google Scholar
  8. 8.
    R.W. Jones, R.H. Staley, J. Am. Chem. Soc., in press.Google Scholar
  9. 9.
    M.M. Kappes, R.H. Staley, J. Am. Chem. Soc., submitted for publication.Google Scholar
  10. 10.
    J.F. Wolf, R.H. Staley, I. Koppel, M. Taagepera; R.T. Mclver, J.L. Beauchamp; R.W. Taft, J. Am. Chem. Soc 99 (1977) 5417.CrossRefGoogle Scholar
  11. 11.
    D.H. Aue, M.T. Bowers in “Gas Phase Ion Chemistry”, Volume 2, M.T. Bowers, Ed., Academic Press: New York, 1979, Chapter 9.Google Scholar
  12. 12.
    R.H. Staley, J.L. Beauchamp, J. Am. Chem. Soc. 97 (1975) 5920.CrossRefGoogle Scholar
  13. 13.
    W.D. Reents, Jr., B.S. Freiser, J. Am. Chem. Soc. 103 (1981)2791.CrossRefGoogle Scholar
  14. 14.
    R.R. Corderman, J.L. Beauchamp, J. Am. Chem. Soc. 98 (1976) 3998.CrossRefGoogle Scholar
  15. 15.
    M.M. Kappes, R.W. Jones, R.H. Staley, J. Am. Chem. Soc., in press.Google Scholar
  16. 16.
    J.E. Huheey, “Inorganic Chemistry”, Second Edition, Harper and Row: New York, 1978, pp. 489–498.Google Scholar
  17. 17.
    F.R. Hartley, Chem. Soc. Rev. 2, (1973) 163.CrossRefGoogle Scholar
  18. 18.
    T.G. Appleton, H.C. Clark, L.E. Manzer, Coord. Chem. Rev. 10 (1973) 335.CrossRefGoogle Scholar
  19. 19.
    Bond energies from Benson, S.W. “Thermochemical Kinetics”, 2nd Edition, Wiley: New York, N.Y., 1976.Google Scholar
  20. 20.
    Assuming a Langevin rate of 5 × 10-10 cm3 molec-1 sec-1, quench gas pressures of 2 × 10-5 torr correspond to about 70 collisions within a typical 200 ms experiment.Google Scholar
  21. 21.
    For examples, see (a) D.S. Bomse, R.L. Woodin, J.L. Beauchamp, in “Advances in Laser Chemistry”, A.H. Zewail: ed. Springer Series in Chemical Physics, Springer: Berlin, 1978.Google Scholar
  22. 21a.
    For examples, see (b) R.C. Dunbar, H.H. Teng, E.W. Fu, J. Am. Chem. Soc. 101 (1979) 6506.CrossRefGoogle Scholar
  23. 21b.
    For examples, see (c) B.K. Janousek, K.J. Reed, J.I. Brauman, J. Am. Chem. Soc. 102 (1980) 3125.CrossRefGoogle Scholar
  24. 22.
    The standard enthalpy change for this reaction was calculated from heats of formation given in ref. 20.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • Manfred M. Kappes
    • 1
  • Ralph H. Staley
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.Institute for Inorganic and Physical ChemistryUniversity of BernBernSwitzerland
  3. 3.Central Research Department, Experimental StationDuPont CompanyWilmingtonUSA

Personalised recommendations