Advertisement

Abstract

The use of isotopically labelled compounds has revolutionized our understanding of the chemistry of living systems. Nowhere is the power of this technique more apparent than in the area of methyl metabolism for here we are dealing with the fate of but a single carbon atom. Furthermore, because only one carbon is involved it has been possible to determine if and when the methyl group moves in biochemical systems as an intact CH3 radical, and alternatively if, and when, transfer of the methyl carbon involves an oxidation-reduction reaction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles, R. H.: Dual nature of isotope effect in metabolism of sarcosine-CD3. Fed. Proc. 14, 170 (1955).Google Scholar
  2. Arnstein, H. R. V.: The biosynthesis of choline methyl groups in the rat. Biochem. J. 47, XVIII (1950).PubMedGoogle Scholar
  3. Arnstein, H. R. V.: The biosynthesis of choline methyl groups by the rat. Biochem. J. 48, 27 (1951).PubMedGoogle Scholar
  4. Arnstein, H. R. V., and A. Neuberger: The effect of cobalamin on the quantitative utilization of serine, glycine, and formate for the synthesis of choline and methyl groups of methionine. Biochem. J. 55, 259 (1953).PubMedGoogle Scholar
  5. Axelrod, J., and R. Tomchick: Enzymatic 0-methylation of epinephrine and other catechols. J. biol. Chem. 233, 702 (1958).PubMedGoogle Scholar
  6. Bennett, M. A.: Utilization of homocystine for growth in presence of vitamin B12 and folic acid. J. biol. Chem. 187, 751 (1950).PubMedGoogle Scholar
  7. Berg, P.: Synthesis of labile methyl groups by guinea pig tissue in vitro. J. biol. Chem. 190, 31 (1951).PubMedGoogle Scholar
  8. Borsook, H., and J. W. Dubnoff: The formation of creatine from glycocyamine in the liver. J. biol. Chem. 132, 559 (1940).Google Scholar
  9. Canellakis, E. S., and H. Tarver: Studies on protein synthesis in vitro. IX. Concerning the apparent uptake of methionine by particulate preparations from liver. Arch. Biochem. 42, 387 (1953).PubMedCrossRefGoogle Scholar
  10. Canellakis, E. S., and H. Tarver: The metabolism of methyl mercaptan in the intact animal. Arch. Biochem. 42, 446 (1953).PubMedCrossRefGoogle Scholar
  11. Cantoni, G. L.: S-Adenosylmethionine; a new intermediate formed enzymatically from L-methionine and adenosinetriphosphate. J. biol. Chem. 204, 403 (1953).Google Scholar
  12. Dubnoff, J. W.: The role of choline oxidase in labilizing choline methyl. Arch. Biochem. 24, 251 (1949).PubMedGoogle Scholar
  13. Elwyn, D., and D. B. Sprinson: The extensive synthesis of the methyl groups of thymine in the adult rat. J. Amer. chem. Soc. 72, 3317 (1950).CrossRefGoogle Scholar
  14. Elwyn, D., A. Weissbach, and D. B. Sprinson: The synthesis of methyl groups from serine and its bearing on the metabolism of one-carbon fragments. J. Amer. chem. Soc. 73, 5509 (1951).CrossRefGoogle Scholar
  15. Elwyn, D., A. Weissbach, S.S. Henry, and D. B. Sprinson: The biosynthesis of choline from serine and related compounds. J. biol. Chem. 213, 281 (1955).PubMedGoogle Scholar
  16. Erlenmeyer, H., W. Schoenauer, and H. Süllmann: Chemical and biochemical dehydrogenation of an ethane-α,d,α1-d-dicarboxylic acid. Helv. chim. Acta 19, 1376 (1936).CrossRefGoogle Scholar
  17. Eyring, H., and A. Sherman: Theoretical considerations concerning the separation of isotopes. J. chem. Phys. 1, 345 (1933).CrossRefGoogle Scholar
  18. Frisell, W. R., and C. G. Mackenzie: The binding sites of sarcosine oxidase. J. biol. Chem. 217, 275 (1955).PubMedGoogle Scholar
  19. Greenberg, G. R., and L. Jaenicke: On the activation of the one-carbon unit for the biosynthesis of purine nucleotides. In Chemistry and biology of purines, Wolstenholme, G. E. W., and C. M. O’Conner, Eds. 204. Boston: Little, Brown 1957.Google Scholar
  20. Hofmeister, F.: Über Methylierung im Tierkörper. Naunyn-Schmiederbergs Arch. exp. Path. Pharmak. 33, 198 (1894).Google Scholar
  21. Horner, W. H., and C. G. Mackenzie: The biological formation of sarcosine. J. biol. Chem. 187, 15 (1950).PubMedGoogle Scholar
  22. Huennekens, F. M., M. J. Osborn, and H. R. Whiteley: Folic acid coenzymes. Science 128, 120 (1958).PubMedCrossRefGoogle Scholar
  23. Johnston, J. M., and C. G. Mackenzie: Isolation of radioformaldehyde in the metabolism of dimethylaminoethanol-C14H3. J. biol. Chem. 221, 301 (1956).PubMedGoogle Scholar
  24. Jonsson, S., and W. A. Mosher: The in vivo synthesis of labile methyl groups. J. Amer. chem. Soc. 72, 3316 (1950).CrossRefGoogle Scholar
  25. Jukes, T. H., and E. L. R. Stokstad: The role of vitamin B12 in metabolic processes. Vitam. and Horm. 9, 1 (1951).CrossRefGoogle Scholar
  26. Keller, E. B., R. A. Boissonnas, and V. du Vigneaud: The origin of the methyl group of epinephrine. J. biol. Chem. 183, 627 (1950).Google Scholar
  27. Keller, E. B., J. R. Rachele, and V. du Vigneaud: A study of transmethylation with methionine containing deuterium and C14 in the methyl group. J. biol. Chem. 177, 733 (1949).PubMedGoogle Scholar
  28. Kruhoffer, P.: On the role played by formate in serine biosynthesis. Biochem. J. 48, 604 (1951).PubMedGoogle Scholar
  29. Lowy, B. A., G. B. Brown, and J. R. Rachele: A study of formaldehyde-C14, D2 as a one-carbon metabolite in the rat. J. biol. Chem. 220, 325 (1956).PubMedGoogle Scholar
  30. Mackenzie, C. G.: Biological antioxidants. Transactions of the fourth conference. New York: Josiah Macy, jr. Foundation 1950.Google Scholar
  31. Mackenzie, C. G.: Formation of formaldehyde and formate in the biooxidation of the methyl group. J. biol. Chem. 186, 351 (1950).PubMedGoogle Scholar
  32. Mackenzie, C. G.: Conversion of N-methylglycines to active formaldehyde and serine, in Amino acid metabolism. McElroy, W. D., and B. Glass, Eds. 702. Baltimore: The Johns Hopkins Press 1955.Google Scholar
  33. Mackenzie, C. G., and R. H. Abeles: Production of active formaldehyde in the mitochondrial oxidation of sarcosine-CD3. J. biol. Chem. 222, 145 (1956).PubMedGoogle Scholar
  34. Mackenzie, C. G., J. P. Chandler, E. B. Keller, J. R. Rachele, N. Cross, D. B. Melville, and V. du Vigneaud: The demonstration of the oxidation in vivo of the methyl group of methionine. J. biol. Chem. 169, 757 (1947).PubMedGoogle Scholar
  35. Mackenzie, C. G., J. P. Chandler, E. B. Keller, J. R. Rachele, N. Cross, and V. du Vigneaud: The oxidation and distribution of the methyl group administerred as methionine. J. biol. Chem. 180, 199 (1949).Google Scholar
  36. Mackenzie, C. G., and W. R. Frisell: The metabolism of dimethylglycine by liver mitochondria. J. biol. Chem. 232, 417 (1958).PubMedGoogle Scholar
  37. Mackenzie, C. G., J. M. Johnston, and W. R. Frisell: The isolation of formaldehyde from dimethylaminoethanol, dimethylglycine, sarcosine, and methanol. J. biol. Chem. 203, 743 (1953).PubMedGoogle Scholar
  38. Mackenzie, C. G., J. R. Rachele, N. Cross, J. P. Chandler, and V. du Vigneaud: A study of the rate of oxidation of the methyl group of dietary methionine. J. biol. Chem. 183, 617 (1950).Google Scholar
  39. Mackenzie, C. G., and V. du Vigneaud: Effect of choline and cystine on the oxidation of the methyl group of methionine. J. biol. Chem. 195, 487 (1952).PubMedGoogle Scholar
  40. Melville, D. B., J. R. Rachele, and E. B. Keller: A synthesis of methionine containing radio-carbon in the methyl group. J. biol. Chem. 169, 419 (1947).PubMedGoogle Scholar
  41. Michaelis, L., and M. L. Menten: Die Kinetik der Invertinwirkung. Biochem. Z. 49, 333 (1913).Google Scholar
  42. Mitoma, C., and D. M. Greenberg: Precursors of beta carbon of serine and of methionine methyl group. Fed. Proc. 10, 225 (1951).Google Scholar
  43. Mitoma, C., and D. M. Greenberg: Studies on the mechanism of the biosynthesis of serine. J. biol. Chem. 196, 599 (1952).PubMedGoogle Scholar
  44. Muntz, J. A.: The inability of choline to transfer a methyl group directly to homocysteine for methionine formation. J. biol. Chem. 182, 489 (1950).Google Scholar
  45. Pilgeram, L. O., E. M. Gal, E. N. Sassenrath, and D. M. Greenberg: Metabolic studies with ethanolamine-1,2-C14. J. biol. Chem. 204, 367 (1953).PubMedGoogle Scholar
  46. Plaut, G. W. E., J. J. Betheil, and H. A. Lardy: The relationship of folic acid to formate metabolism in the rat. J. biol. Chem. 184, 795 (1950).PubMedGoogle Scholar
  47. Rachele, J. R., and H. Aebi: Methyl synthesis in the rat from formate intramolecularly labeled with C14 and deuterium. Fed. Proc. 15, 333 (1956).Google Scholar
  48. Rachele, J. R., E. J. Kuchinskas, J. E. Knoll, and M. L. Eidinoff: Isotopic selection in the neogenesis of labile methyl groups from monodeuterio-, monotritio-, C14-labelled methanol. J. Amer. chem. Soc. 76, 4342 (1954).CrossRefGoogle Scholar
  49. Rachele, J. R., E. J. Kuchinskas, F. H. Kratzer, and V. du Vigneaud: Hydrogen isotope effect in the oxidation in vivo of methionine labelled in the methyl group. J. biol. Chem. 215, 593 (1955).PubMedGoogle Scholar
  50. Rachele, J. R., A. M. White, and H. Grünewald: Biosynthesis of labile methyl groups and of serine from intramolecularly labeled formaldehyde-C14, D2, abstracts. Amer. chem. Soc. 57 C, 132nd Meeting, New York, September 1957.Google Scholar
  51. Ressler, C, J. R. Rachele, and V. du Vigneaud: Studies in vivo on labile methyl synthesis with deuterio-C14-formate. J. biol. Chem. 197, 1 (1952).PubMedGoogle Scholar
  52. Sakami, W.: The conversion of formate and glycine to serine and glycogen in the intact rat. J. biol. Chem. 176, 995 (1948).PubMedGoogle Scholar
  53. Sakami, W.: The conversion of glycine into serine in the intact rat. J. biol. Chem. 178, 519 (1949).PubMedGoogle Scholar
  54. Sakami, W.: The formation of the β-carbon of serine from choline methyl groups. J. biol. Chem. 179, 495 (1949).PubMedGoogle Scholar
  55. Sakami, W.: The biochemical relationship between glycine and serine, in Amino acid metabolism. McElroy, W. D., and B. Glass, Eds. 658. Baltimore: Johns Hopkins Press 1955.Google Scholar
  56. Sakami, W., and A. D. Welch: Synthesis of labile methyl groups by the rat in vivo and in vitro. J. biol. Chem. 187, 379 (1950).PubMedGoogle Scholar
  57. Schenck, J. R., S. Simmonds, M. Cohn, C M. Stevens, and V. du Vigneaud: The relation of transmethylation to anserine. J. biol. Chem. 149, 355 (1943).Google Scholar
  58. Siegel, I., and J. Lafaye: Formation of the β-carbon of serine from formaldehyde. Proc. Soc. exp. Biol. (N. Y.) 74, 620 (1950).CrossRefGoogle Scholar
  59. Siekevitz, P., and D. M. Greenberg: The biological formation of formate from methyl compounds in liver slices. J. biol. Chem. 186, 275 (1950).PubMedGoogle Scholar
  60. Siekevitz, P., T. Winnick, and D. M. Greenberg: The biological synthesis of serine from glycine. Fed. Proc. 8, 250 (1949).Google Scholar
  61. Simmonds, S., M. Cohn, J. P. Chandler, and V. du Vigneaud: The utilization of the methyl groups of choline in the biological synthesis of methionine. J. biol. Chem. 149, 519 (1943).Google Scholar
  62. Simmonds, S., and V. du Vigneaud: A further study of the lability of the methyl group of creatine. Proc. Soc. exp. Biol. (N. Y.) 59, 293 (1945).CrossRefGoogle Scholar
  63. Sprinson, D. B.: The formation of C1 fragments from serine, in amino acid metabolism. McElroy, W. D., and B. Glass, Eds. 608, Baltimore: Johns Hopkins Press 1955.Google Scholar
  64. Stekol, J. A., K. W. Weiss, and S. Weiss: Role of folacine and vitamin B12 in synthesis and utilization of choline by the rat as studied with C-14-glycine, formate, and methionine. Fed. Proc. 10, 252 (1951).Google Scholar
  65. Stekol, J. A., S. Weiss, and E. I. Anderson: On the origin of the methyl groups of phospholipid choline in the rat. J. Amer. chem. Soc. 77, 5192 (1955).CrossRefGoogle Scholar
  66. Stetten, D. jr.: Biological relationships of choline, ethanolamine, and related compounds. J. biol. Chem. 138, 437 (1941).Google Scholar
  67. Stetten, D. jr.: Biological relationships of choline, ethanolamine, and related compounds. J. biol. Chem. 140, 143 (1941).Google Scholar
  68. Thorn, M. B.: Studies on the enzymic oxidation of succinic acid containing deuterium in the methylene groups. Biochem. J. 49, 602 (1951).PubMedGoogle Scholar
  69. Toennies, G., M. A. Bennett, and G. Medes: The ability of homocystine to support rat growth in the absence of dietary choline and methionine. Growth 7, 251 (1943).Google Scholar
  70. Verly, W. G., J. R. Rachele, V. du Vigneaud, M. L. Eidinoff, and J. E. Knoll: A test of tritium as a labeling device in a biological study. J. Amer. chem. Soc. 74, 5941 (1952).CrossRefGoogle Scholar
  71. Vigneaud, V. du, J. P. Chandler, M. Cohn, and G. B. Brown: The transfer of the methyl group from methionine to choline and creatine. J. biol. Chem. 134, 787 (1940).Google Scholar
  72. Vigneaud, V. du, and A. W. Moyer: The inability of creatine and creatinine to enter into transmethylation in vivo. J. biol. Chem. 139, 917 (1941).Google Scholar
  73. Vigneaud, V. du, and A. W. Moyer, and D.M. Keppel: The ability of homocystine plus choline to support growth of the white rat on a methionine-free diet. Proc. Amer. Soc. Biol. Chem., J.biol.Chem. 128, CVIII (1939).Google Scholar
  74. Vigneaud, V. du, and A. W. Moyer, and D.M. Keppel: The effect of choline on the ability of homocystine to replace methionine in the diet. J. biol. Chem. 131, 57 (1939).Google Scholar
  75. Vigneaud, V. du, S. Simmonds, A. W. Moyer, and M. Cohn: The role of dimethyl- and monomethylamino-ethanol in transmethylation reactions in vivo. J. biol. Chem. 164, 603 (1946).PubMedGoogle Scholar
  76. Vigneaud, M. Cohn, J. P. Chandler, J. R. Schenck, and S. Simmonds: The utilization of the methyl group of methionine in the biological synthesis of choline and creatine. J. biol. Chem. 140, 1625 (1941).Google Scholar
  77. Vigneaud, J., M. Kinney, J. E. Wilson, and J. R. Rachele: Effect of the presence of labile methyl groups in the diet on labile methyl neogenesis. Biochem. biophys. Acta 12, 88 (1953).CrossRefGoogle Scholar
  78. Vigneaud, J. R. Rachele, and A. M. White: A crucial test of transmethylation in vivo by intramolecular isotopic labeling. J. Amer. chem. Soc. 78, 5131 (1956).CrossRefGoogle Scholar
  79. Vigneaud, C. Ressler, and J. R. Rachele: The biological synthesis of “labile methyl groups”. Science 112, 267 (1950).PubMedCrossRefGoogle Scholar
  80. Vigneaud, C. Ressler, and J. R. Rachele, J. A. Reyniers, and T. D. Luckey: The synthesis of “biologically labile” methyl groups in the germ-free rat. J. Nutr. 45, 361 (1951).Google Scholar
  81. Vigneaud, S. Simmonds, J. P. Chandler, and M. Cohn: Synthesis of labile methyl groups in the white rat. J. biol. Chem. 159, 755 (1945).Google Scholar
  82. Vigneaud, S. Simmonds, J. P. Chandler, and M. Cohn: A further investigation of the role of betaine in transmethylation reactions in vivo. J. biol. Chem. 165, 639 (1946).PubMedGoogle Scholar
  83. Vigneaud, S. Simmonds, and M. Cohn: A further investigation of the ability of sarcosine to serve as a labile methyl donor. J. biol. Chem. 166, 47 (1946).PubMedGoogle Scholar
  84. Vigneaud, V. du, and W. G. L. Verly: Incorporation in vivo of C14 from labeled methanol into the methyl groups of choline. J. Amer. chem. Soc. 72, 1049 (1950).CrossRefGoogle Scholar
  85. Vigneaud, J. E. Wilson, J. R. Rachele, C. Ressler, and J. M. Kinney: One-carbon compounds in the biosynthesis of the “biologically labile” methyl group. J. Amer. chem. Soc. 73, 2782 (1951).CrossRefGoogle Scholar
  86. Weissbach, A., D. Elwyn, and D. B. Sprinson: The synthesis of the methyl groups and ethanolamine moiety of choline from serine and glycine in the rat. J. Amer. chem. Soc. 72, 3316 (1950).CrossRefGoogle Scholar
  87. Welch, A. D., and W. Sakami: Synthesis of labile methyl groups by animal tissues in vivo and in vitro. Fed. Proc. 9, 245 (1950).Google Scholar
  88. Willstätter, R.: Über Betaine. Ber. dtsch. chem. Ges. 35, 1584 (1902).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1961

Authors and Affiliations

  • Wilhelm R. Frisell
  • Cosmo G. Mackenzie

There are no affiliations available

Personalised recommendations