Advertisement

Abstract

Nanocrystalline solids are polycrystals the crystal size of which is a few (typically 1 to 10) nanometers so that 50% or more of the solid consists of incoherent interfaces between crystals of different crystallographic orientations. Materials consisting primarily of internal interfaces represent a separate state of solid matter because the atomic arrangements formed in the cores of interfaces are known to be arrangements of minimum energy in the potentials field of the adjacent crystal lattices. The boundary conditions imposed on the atoms in the interfacial cores by the adjacent crystal lattices, result in atomic structures in the interfacial cores which cannot be formed elsewhere (e.g. in glasses or perfect crystals). Nanocrystalline materials seem to be of interest for the following four reasons:
  1. (1)

    Nanocrystalline materials exhibit atomic structures which differ from the two known solid state structures: the crystalline and the glassy state.

     
  2. (2)

    The properties of nanocrystalline materials differ (in some cases by several orders of magnitude) from those of glasses and/or crystals with the same chemical composition.

     
  3. (3)

    Nanocrystalline materials seem to permit the alloying of conventionally insoluble components.

     
  4. (4)

    If small (1 to 10 nm diameter) glassy droplets are consolidated (instead of small crystals), a new type of glasses, called nanoglasses, is obtained. Such glasses seem to differ structurally from glasses generated by rapid solidification.

     

Keywords

Atomic Structure Quadrupole Splitting Nanocrystalline Material Atomic Arrangement Nanocrystalline Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Gleiter in: Second Riso Internat. Symposium on Metallurgy and Materials Science, N. Hansen, A. Horsewell, T. Leffers and H. Lilholt (eds.) Risø Nat. Laboratory Roskilde, Denmark, p. 15 (1981).Google Scholar
  2. P. Marquardt and H. Gleiter, Verhandl. d. Deutsch. Physikal. Gesellsch. (DPG) (VI) 15, 328 (1980).Google Scholar
  3. 2.
    K.L. Merkle, J.F. Reddy, C.L. Wiley and D.J. Smith, Phys. Rev. Lett. 59, 2887 (1987).CrossRefGoogle Scholar
  4. 3.
    E. Taglauer, physica status solidi 29, 259 (1968).CrossRefGoogle Scholar
  5. E. Taglauer, physica status solidi 42, 2639 (1971).Google Scholar
  6. 4.
    J. Friedel, Dislocations, Pergamon Press Oxford, p. 25 (1964).Google Scholar
  7. 5.
    M. R. Fitzsimmons and S.L. Sass, Jnl. de Phys. 49, C5–71 (1987).Google Scholar
  8. 6.
    H. Gleiter and P. Marquardt, Zeitschrift für Metallkunde 75, 263 (1984).Google Scholar
  9. 7.
    R.W. Siegel and H. Hahn, Current Trends in Physics of Materials, Ed. M. Yusouff, World Scientific Publ. Co., Singapore, p. 403 (1987).Google Scholar
  10. 8.
    R. Birringer and H. Gleiter, Advances in Materials Science, Suppl. Vol. 1 Encyclopedia of Mat. Sci. and Eng., R.W. Cahn (ed.),Pergamon Press, Oxford, p.339 (1988).Google Scholar
  11. 9.
    H.E. Schaeffer, R. Würschum and R. Birringer, J. Less-Common Metals 140, 161 (1988).CrossRefGoogle Scholar
  12. 10.
    C. Suryanarayana and F.H. Froes, Proc. Physical Chemistry of Powder Metal Production and Processing, W. Murray and D.G.C. Robertson (eds), TMS Publ. Warndale P.A., p. 269 (1989).Google Scholar
  13. 11.
    R. Birringer, Materials Sci. and Eng. A117, 33 (1989).CrossRefGoogle Scholar
  14. 12.
    P. Haasen, Nachr. d. Akademie der Wissenschaften, Göttingen II. Mathem. Phys.: Klasse 6, 1 (1970)Google Scholar
  15. 13.
    G. Wasserman in: Proc. 4th Int. Conference on Strength of Metals and Alloys,Vol. 3, Nancy, p. 1343 (1976).Google Scholar
  16. 14.
    G. Frommeyer and G. Wassermann, Z.f. Werkstofftechnik, 2, 136 and 154 (1976).CrossRefGoogle Scholar
  17. 15.
    J.D. Embury in: Strengthening Methods in Crystals, A. Kelly and R.B. Nicholson (eds.), Applied Science Publ. Ltd, London, p. 331 (1971).Google Scholar
  18. 16.
    R.B. Nicholson ibid p. 535.Google Scholar
  19. 17.
    R.A. Roy and R. Roy, Mater.Res. Bull. 19, 169 (1984).CrossRefGoogle Scholar
  20. 18.
    D. Hoffman, R. Roy and S. Komarneni, Mater.Lett., 2, 245 (1984).CrossRefGoogle Scholar
  21. 19.
    D. Hoffman, S. Komarneni and R. Roy, J. Mater. Sci.Lett. 3, 439 (1984).CrossRefGoogle Scholar
  22. 20.
    R. Roy, S. Komarneni and D.M. Roy in: Better Ceramics Through Chemistry, C.J. Brinker (ed.),. Elsevier North Holland, New York, p. 345 (1984).Google Scholar
  23. 21.
    R. Roy, R.A. Roy and D.M. Roy, Mater. Lett. 4, 384 (1986).CrossRefGoogle Scholar
  24. 22.
    R. Roy, Mater. Sci. Res. 21, 25 (1987).Google Scholar
  25. 23.
    R.P. Feynman, There’s plenty of room at the bottom, in: H.D. Gilbert (ed.), Miniaturization, Reinhold, New York, p. 282 (1961).Google Scholar
  26. 24.
    L. Esaki und R. Tsu, IBM Research Note RC-2418 (1969).Google Scholar
  27. 25.
    L. Esaki und R. Tsu, IBM J. Res. Develop. 14, 61 (1970).CrossRefGoogle Scholar
  28. 26.
    E.E. Mendez and K.v. Klitzing, Physics and Applications of Quantum Wells and Superlattices, Plenum Press, N.Y. (1988).Google Scholar
  29. 27.
    R.S. Lewis, T. Ming, J.F. Wacker, E. Anders and E. Steel, Nature 326, 160 (1987).CrossRefGoogle Scholar
  30. 28.
    J.F. Kerridge and M.S. Matthews, Meteorites and the Early Solar System, Univ. Arizona Press (1988).Google Scholar
  31. 29.
    E. Jorra, H. Franz, J. Preisl, G. Wallner W. Petry, R. Birringer, H. Gleiter and T. HauUnderline, Philos.Mag. B60, 159 (1989).CrossRefGoogle Scholar
  32. 30.
    M.R. Fitzsimmons, E. Burkel and J. Peisl, Verhandl. d. Dtsch. Physikal. Gesellsch. DPG (VI) 25, 625-DS 8. 4 (1990).Google Scholar
  33. 31.
    G. Wallner, E. Jorra, H. Franz, J. Peisl, R. Birringer, H. Gleiter, T. HauUnderline, W. Petry, Mat. Res. Soc. Symp. Proc. 132, 149 (1989).CrossRefGoogle Scholar
  34. 32.
    J.E. Epperson, R.W. Siegel, J.W. White, T.E. Klippert, A. Narayanasamy, J.A. Eastman and F. Trouw, Mat. Res. Soc. Symp. Proc. 132, 15 (1989).CrossRefGoogle Scholar
  35. 33.
    T. HauUnderline, R. Birringer, B. Lengeler and H. Gleiter, Phys. Lett. 135, 461 (1989).CrossRefGoogle Scholar
  36. 34.
    S. Ramasamy, J. Jiang, R. Birringer, U. Gonser and H. Gleiter, Solid State Commun. 74, 851 (1990).CrossRefGoogle Scholar
  37. 35.
    X. Zhu, R. Birringer, U. Herr and H. Gleiter, Phys. Rev. B35, 9085 (1987).CrossRefGoogle Scholar
  38. 36.
    J. Jiang, S. Ramasamy, R. Birringer, U. Gonsor und H. Gleiter, to be published.Google Scholar
  39. 37.
    D. Korn, A. Morsch, R. Birringer, W. Arnold and H. Gleiter, J. de Physique 49, C5–769 (1988).Google Scholar
  40. 38.
    J. Rupp and R. Birringer, Phys. Rev. B36, 7888 (1987).CrossRefGoogle Scholar
  41. 39.
    E. Hellstern, H.J. Fecht, Z. Fu and W.L. Johnson, J.Appl. Phys 65, 305 (1989).CrossRefGoogle Scholar
  42. 40.
    H. Gleiter, Nanocrystalline Materials, Progress Materials Science, J. Christian, P. Haasen, T.B. Massalski (eds.), Pergamon Press, N.Y. 33, 224 (1990).Google Scholar
  43. 41.
    R. Birringer, U. Herr and H. Gleiter, Suppl. Trans. Jpn. Inst. Met. 27, 43 (1986).Google Scholar
  44. 42.
    S. Schumacher, R. Birringer, R. Strauss and H. Gleiter, Acta Metallurgica 37, 2485 (1989).CrossRefGoogle Scholar
  45. 43.
    J. Karch, R. Birringer and H. Gleiter, Nature 330, 556 (1987).CrossRefGoogle Scholar
  46. 44.
    U. Herr, J. Jing, U. Gonser and H. Gleiter, Solid State Commun. in press.Google Scholar
  47. 45.
    W.C. Johnson and J.I.D. Alexander, J. Appl. Phys. 59, 2735 (1986).CrossRefGoogle Scholar
  48. 46.
    J.W. Cahn, and F.C. Larche, Acta Metallurgica 32, 1915 (1984).CrossRefGoogle Scholar
  49. 47.
    R. Kelly and R.B. Nicholson Progress Materials Science, B. Chalmers (ed.) Pergamon Press N.Y. 10, 276 (1963).Google Scholar
  50. 48.
    J. Jing, A. Krämer, R. Birringer, H. Gleiter and U. Gonser J. of Non-Crystalline Solid 113, 167 (1989).CrossRefGoogle Scholar
  51. 49.
    J. Weissmüller, R. Birringer and H. Gleiter, Phys. Lett. A145, 130 (1990).CrossRefGoogle Scholar
  52. 50.
    R.S. Averback, H. Hahn, H.J. Hoefler and R.C. Logas, Appl. Phys. Lett. in press.Google Scholar
  53. 51.
    J. Weissmüller: Ph.D. Thesis Univ. of Saarbrücken 1990.Google Scholar
  54. 52.
    L.N. Paritskaya, V.I. Novikov and V.S. Kruzhanov, Soviet Powder Metallurgy and Metal Ceramics 21, 554 (1982).CrossRefGoogle Scholar
  55. 53.
    R.Z. Valiev, R.R. Mulyukov, Kh.Ya. Mulyukov, V.I. Novikov and L.I. Trusov, Zh. tekh. Fiz. 15, 78 (1989).Google Scholar
  56. 54.
    R.Z. Valiev, Y.D. Vishnyakov, R.R. Mulyukov and G.S. Fainstein, physica status solidi (a) 117, 549 (1990).CrossRefGoogle Scholar
  57. 55.
    R.Z. Valiev, R.Sh. Musalinov and N.K. Tsenev, physica status solidi (b) in press (1990).Google Scholar
  58. 56.
    R.Z. Valiev, R.R. Mulyukov and V.V. Ovchinnikov, Philos. Mag. Letters in press (1990).Google Scholar
  59. 57.
    H.F. Fischmeister, Materials Science, Research 21, 1 (1987), (Ceramic Microstructures 86; Role of Interfaces, J.A. Pask and G. Evans, eds.).Google Scholar
  60. 58.
    H. Gleiter, Proc. 1990 MRS Fall Metting, Boston, Symposium G, in press.Google Scholar
  61. 59.
    I. Kaur and W. Gust Handbook of Grain and Interphase Boundary Diffusion Data Vol. 1 and 2, Ziegler Press Stuttgart (1989).Google Scholar
  62. 60.
    J. Karch and R. Birringer, Ceramics International, in press.Google Scholar
  63. 61.
    H. Hahn, J. Logas, H.J. Hoefler and R.S. Averback, Mat. Res. Soc. Symp. (1990) in press.Google Scholar
  64. 62.
    J.W. Edington, K.S. Melton, and C.P. Cutler, Progress in Materials Science 21, 61 (1976).CrossRefGoogle Scholar
  65. 63.
    A. H. Heuer, D.J. Sellers and W.H. Rhodes, J. Am. Ceram. Soc. 52, 468 (1969).CrossRefGoogle Scholar
  66. 64.
    J.D. Fridez, C. Carry, A. Mocellin, Advances in Ceramics, Vol. 10, W.D. Kingery (ed.), Am. Ceram. Soc., Columbus, OH (1984).Google Scholar
  67. 65.
    K.R. Venkatachari and R. Raj, J. Am. Ceram. Soc. 69, 135 (1986).CrossRefGoogle Scholar
  68. 66.
    N. Claussen and A.H. Heuer, in Encyclopedia of Materials, Science and Engineering, M.B. Bever (ed.), Pergamon and MIT p. 5129 (1986).Google Scholar
  69. 67.
    F.F. Lange, J. Mat. Sci. 17, 225 (1982).CrossRefGoogle Scholar
  70. 68.
    R.C. Garvie, R.H. Hannink and R.T. Pascoe, Nature 258, 703 (1975).CrossRefGoogle Scholar
  71. 69.
    T. Mütschele and R. Kirchheim, Scripta Metall. 21, 135 (1987).CrossRefGoogle Scholar
  72. 70.
    H. Hahn, H.J. Hoefler and R.S. Averback, DIMETA-88, International Conference on Diffusion in Metals and Alloys, Balatonfüred, Hungary, September 5–9, 1988, to be published in Materials Science Forum.Google Scholar
  73. 71.
    W. Geibel, Diploma Thesis, Univ. of Saarbrücken 1989 to be published.Google Scholar
  74. 72.
    R. Pond and R. Maddin, Materials Sci. and Eng. 23, 87 (1969).CrossRefGoogle Scholar
  75. 73.
    H.S. Chen and C.E. Miller Rev. Sci. Instr. 41, 1237 (1970). Materials Science Forum.CrossRefGoogle Scholar
  76. 74.
    M.J. Weins, H. Gleiter and B. Chalmers, J. of Applied Physics 42, 2639 (1971).CrossRefGoogle Scholar
  77. 75.
    Y. Yoshizawa, K. Yamauchi and S. Oguma, European Patent 0 271 657-A2, 22. 06. 1988.Google Scholar
  78. 76.
    U. Herr, H. Jing, R. Birringer, U. Gonsor and H. Gleiter, Appl. Phys.Lett. 50, 472 (1987).CrossRefGoogle Scholar
  79. 77.
    Y. Ishida and T. Ozawa, Scripta Metall. 9, 1103 (1975).CrossRefGoogle Scholar
  80. 78.
    D. Wolf, MRS Bulletin 15, 42 (1990).Google Scholar
  81. 79.
    B.H. Kear and R.W. Siegel (eds), Proc. Acta Metallurgica Conference on Materials with Ulrafeine Microstructures, 1–5 October 1990, Atlantic City, Acta Metall. in press.Google Scholar
  82. 80.
    S.R. Philipot, D. Wolf and S. Yip, MRS Bulletin Oct. 1990, 38.Google Scholar
  83. 81.
    G. Herzer and H. Warlimont, Proc. Acta Metallurgica Conference on Materials with Ultrafine Microstructures, 1–5 October 1990, Atlantic City, Acta Metall. in press.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1991

Authors and Affiliations

  • H. Gleiter
    • 1
  1. 1.Institut für Neue MaterialienUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations