Advertisement

Functional Anatomy of the Muscles of the Anterolateral Abdominal Wall: Electromyography and Histoenzymology

Relationship Between Abdominal Wall Activity and Intra-abdominal Pressure

Abstract

The descriptive anatomy and pathology of the abdominal wall are well known to surgeons and specialists in functional rehabilitation. Conversely, few studies have been devoted to the anatomophysiological features of the parietal muscles, and little progress has been made regarding the functional anatomy of the recti abdomini and flat abdominal muscles (the transverse and internal and external obliques).

Keywords

Motor Unit Abdominal Muscle Abdominal Pressure Functional Anatomy Contraction Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barraya L, Ndjaga MBA, Carles R (1978) Physiopathologie du péritoine, péritonisation drainage. Techniques chirurgicales Appareil digestif: 4303. Encycl Med Chir, Paris, 40070 1–16Google Scholar
  2. Bert P (1870) Leçons sur la physiologie comparée de la respiration. Baillière, Paris, pp 338–346Google Scholar
  3. Buchtal F, Schmalbruck H (1970) Contraction times and fiber types in intact human muscle. Acta Physiol Scand 79: 435–455CrossRefGoogle Scholar
  4. Burke RE (1973) On the central nervous system control of fast-and slow-twitch motor units. In: Desmedt JE (ed) New developments in electromyography and clinical neurophysiology, vola. Karger, Basel, pp 69–94Google Scholar
  5. Campbell EJM (1955) The functions of the abdominal muscles in relation to the intra-abdominal pressures and the respiration. Arch Middx Hosp 5: 87–94PubMedGoogle Scholar
  6. Delhez L (1974) Contribution électromyographique à l’étude de la mécanique et du contrôle nerveux des mouvements respiratoires de l’homme. VaillantCarmanne, LiegeGoogle Scholar
  7. Diamant M, Benumof JL, Saidman LJ (1978) Hemodynamics of increased intra-abdominal pressure. Anesthesiology 48: 23–27PubMedCrossRefGoogle Scholar
  8. Drye JC (1948) Intraperitoneal pressure in the human. Surg Gynecol Obstet 87: 472–475PubMedGoogle Scholar
  9. Dubowitz V, Pearse AG (1960) A comparative histochemical study of oxidative enzyme and phosphorylase activity in skeletal muscle. Histochemie 2: 105–117PubMedCrossRefGoogle Scholar
  10. Engel WK, Burke RE, Tsairis P, Levine DN, Zajac III FE (1973) Direct correlation of physiological and histochemical characteristics in motor units of cat triceps surae muscle. In: Desmedt JE (ed) New developments in electromyography and clinical neurophysiology, vol I. Karger, Basel, pp 23–30Google Scholar
  11. Flament JB, Clément C (1979) Les variations de la pression abdominale dans la région sous-diaphragmatique au cours de la respiration. Importance physiologique du cloisonnement anatomique. Nouvelle Presse Medicale 8: 612–613PubMedGoogle Scholar
  12. Grillner S, Nilson J, Thorstensson A (1977) Intra-abdominal pressure changes during natural movements in man. Acta Physiol Scand 103: 275–283CrossRefGoogle Scholar
  13. Henneman E, Olson CB (1965) Observations between structure and function in the design of skeletal muscles. J Neurophysiol 28: 581–598PubMedGoogle Scholar
  14. Mayer RF (1973) Observations on motor units in cat anterior tibial muscle. In: Desmedt JE (ed) New developments in electromyography and neurophysiology, vol 1, Karger, Basel, pp 31–34Google Scholar
  15. Overholt R (1931) Intraperitoneal pressure. Arch Surg 22: 691–703CrossRefGoogle Scholar
  16. Pans A, Pierard GE, Albert A, Desaive C (1997) Bio-mechanical assessment of the transversalis fascia and rectus abdominis aponeurosis in inguinal herniation. Preliminary results. Hernia 1: 27–30CrossRefGoogle Scholar
  17. Sica REP, McComas AJ, Ferreira JCD (1978) Evaluation of an automated method for analysing the electromyogram. Can J Neurol Sci 5: 275–281PubMedGoogle Scholar
  18. Warmolts JR, Engel WK (1973) Correlation of motor unit behavior with histochemical myofiber type in humans by open biopsy electromyography. In: Desmedt JE (ed) New developments in electromyography and clinical neurophysiology, vol 1. Karger, Basel, pp 35–40Google Scholar
  19. Wildegas H (1923) Messen des intraperitonealen Druckes. Mitt Grenzgeb Med Chir 37: 308Google Scholar
  20. Willison RG (1963) A method of measuring motor unit activity in human muscle. J Physiol 168: 35–36Google Scholar
  21. Winckler K, Heriksen JH, Stage JG, Schlichting P (1980) Intraperitoneal pressure: ascitic fluid and splanchnic vascular pressures, and their role in prevention and formation of ascites. Scand J Clin Lab Invest 4o: 493–502Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • M. Caix

There are no affiliations available

Personalised recommendations