• Günter Schmidt
Part of the Betriebs- und Wirtschaftsinformatik book series (BETRIEBS, volume 36)


Die Probleme der Steuerung von FFS zeichnen sich durch eine hohe Komplexität aus. Die Eingabedaten sind dynamisch und unterliegen laufenden Veränderungen. Diese Instabilität des Datenmaterials macht permanente Revisionen nötig, wobei existierende Lösungen kontinuierlich überarbeitet und angepaßt werden müssen. Verfahren, die dies erreichen wollen, müssen eine kurze Laufzeit aufweisen. Komplexe Verfahren mit großer Ressourceninanspruchnahme, d.h. insbesondere mit langen Rechenzeiten, sind für eine Lösung der Probleme der FS bei FFS nicht geeignet.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balas, E. (1967), Discrete programming by the filter method, Oper. Res. 15, 915–957.CrossRefGoogle Scholar
  2. Barash, M.M., Leimkuhler, F.F., Solberg, J.J., Talavage, J.J. (1981), Optimal planning of computerized manufacturing systems, Proc. 8th NSF Grantees’Conf. Production Research and Technology.Google Scholar
  3. Bellman, R.E. (1957), Dynamic Programming, Princeton University Press, Princeton.Google Scholar
  4. Brachman, R. (1979), On the epistemological status of semantic networks, in N. Findler (ed.), Associative Networks, Representation and Use of Knowledge by Computer, Academic Press, New York.Google Scholar
  5. Bradley, S.P., Hax, A.C., Magnanti, T.L. (1977), Applied Mathematical Programming, Addison-Wesley, Reading.Google Scholar
  6. Bruell, S.C., Balbo, G. (1980), Computational Algorithms for Closed Queueing Networks, North Holland, New York.Google Scholar
  7. Buchanan, B., Shortliffe, E. (1984), Rule-Based Expert Systems, Addison-Wesley, Reading.Google Scholar
  8. Bulgren, W. (1982), Discrete System Simulation, Prentice-Hall, New Jersey.Google Scholar
  9. Buzacott, J.A. (1976), The production capacity of job shops with limited storage space, Int. J. Prod. Res. 14, 597–605.CrossRefGoogle Scholar
  10. Buzacott, J.A., Shanthikumar, J.G. (1980), Models for understanding flexible manufacturing systems, AIIE Trans. 12, 339–350.Google Scholar
  11. Buzacott, J.A., Yao, D.D. (1986), On queueing network models for flexible manufacturing systems, Queueing Systems 1, 5–27.CrossRefGoogle Scholar
  12. Buzen, J. (1973), Computational algorithms for closed queueing networks with exponential servers, Commun. of the ACM. 16, 527–537.CrossRefGoogle Scholar
  13. Carrie, A. (1986), The role of simulation in flexible manufacturing systems, in A. Kusiak (ed.), FMS: Methods and Studies, North-Holland, Amsterdam, 191–208.Google Scholar
  14. Carrie, A., Adhami,E., Stephens, A., Murdoch, I. (1984), Introducing a flexible manufacturing system, Int. J. of Prod. Res. 22, 907–916.CrossRefGoogle Scholar
  15. Cavaillé, J.-B., Forestier, J.B., Bel, G. (1981), A simulation program for analysis and design of a flexible manufacturing system, Proc. IEEE Conf. Cyber. and Society, Atlanta, 257–259.Google Scholar
  16. Chorafas, D.N. (1987), Applying Expert Systems in Business, McGraw, New York.Google Scholar
  17. Co, H.C., Wysk, R.A. (1986), The robustness of CAN-Q in modelling automated manufacturing systems, Int. J. Prod. Res. 24, 1485–1503.CrossRefGoogle Scholar
  18. Dallery, Y. (1986), On modelling flexible manufacturing systems using closed queueing networks, TIMS/ORSA Joint National Meeting, Los Angeles.Google Scholar
  19. Dantzig, G.B. (1963), Linear Programming and Extensions, Princeton University Press, Princeton.Google Scholar
  20. Dee, Z.J., Co, H.C., Wysk, R.A. (1986), Sim-Q: a simplified approach to simulation modelling of automated manufacturing systems, in K.E. Stecke, R. Suri (eds.), Proc. 2nd ORSA/TIMS Conf. on FMS, Elsevier, Amsterdam, 417–430.Google Scholar
  21. Dubois, D. (1983), A mathematical model of a flexible manufacturing system with limited in process inventory, European J. Oper. Res. 14, 66–78.CrossRefGoogle Scholar
  22. ElMaraghy, H. (1982), Simulation and graphical animation of advanced manufacturing systems, J. of Manuf. Syst. 1, 53–64.CrossRefGoogle Scholar
  23. ElMaraghy, H., Ho, N. (1982), A simulator for flexible manufacturing systems with graphical animation, Proc. 2nd Int. Comput. Eng. Conf., San Diego.Google Scholar
  24. Fikes, R., Kehler, T. (1985), The role of frame-based representation in reasoning, Commun. of the ACM 28, 904–920.CrossRefGoogle Scholar
  25. Fisher, M.L. (1980), Worst-case analysis of heuristic algorithms, Man. Sci. 26, 1–17.Google Scholar
  26. Fishman, G.S. (1978), Principles of Discrete Event Simulation, Wiley, New York.Google Scholar
  27. Forgy, C.L. (1981), OPS5 user’s manual, CMU-CS-81–135, Department of Computer Science, Carnegie-Mellon University, Pittsburgh.Google Scholar
  28. Garey, M.R., Johnson, D.S. (1979), Computers and Intractability: a Guide to the Theory of NP-Completeness, Freeman, San Francisco.Google Scholar
  29. Gershwin, S.B., Hildebrandt, R.R., Suri, R., Mitter, S.K. (1986), A control perspective on recent trends in manufacturing systems, IEEE Control Systems Magazine, 3–15.Google Scholar
  30. Genesereth, M.R., Ginsberg, M.L. (1985), Logic programming, Commun. of the ACM 28, 933–941.CrossRefGoogle Scholar
  31. Golden, B.L., Stewart, W.R. (1985), Empirical analysis of heuristics, in E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys (eds.), The Traveling Salesman Problem, Wiley, Chichester, 207–279.Google Scholar
  32. Gomory, R.E. (1958), Outline of an algorithm for integer solutions to linear programs, Bull. Amer. Math. Soc. 64, 275–278.CrossRefGoogle Scholar
  33. Gordon, W., Newell, G. (1967), Closed queueing systems with exponential servers, Oper. Res. 15, 254–265.CrossRefGoogle Scholar
  34. Harmon, P., King, D. (1985), Expert Systems, Wiley, New York.Google Scholar
  35. Hayes-Roth, F., Waterman, D.A., Lenat, D.B. (1983), Building Expert Systems, Addison-Wesley, London.Google Scholar
  36. Hillier, F., Liebermann, G. (1974), Introduction to Operations Research, Holden-Day Inc., San Francisco.Google Scholar
  37. Hirsch, P., Meier, M., Snyder, S., Stillman, R. (1985), PRISM: prototype inference system, AFIPS Conf. Proc. 54, 121–124.Google Scholar
  38. Hirsch, P., Katke, W., Meier, M., Snyder, S., Stillman, R. (1986), Interfaces for knowledge-base builders’ control knowledge and application-specific procedures, IBM J. Res. Develop. 30, 29–38.CrossRefGoogle Scholar
  39. Ho, Y.C. (1985), A survey of the perturbation analysis of discrete event dynamic systems, Ann. Oper. Res. 3, 393–402.CrossRefGoogle Scholar
  40. Ho, Y.C., Suri, R., Cao, X.R., Diehl, G.W., Dille, J.W., Zazanis, M.A. (1984), Optimization of large multiclass (non-product-form) queueing networkes using perturbation analysis, Large Scale Systems 7, 165–173.Google Scholar
  41. Jackson, J.R. (1957), Networks of waiting lines, Oper. Res. 5, 518–532.CrossRefGoogle Scholar
  42. Jackson, J.R. (1963), Jobshop-like queueing systems, Man. Sci. 10, 131–142.Google Scholar
  43. Jain, S., Foley, W.J. (1986), Basis for development of a generic FMS simulator, in K.E. Stecke, R. Suri (eds.), Proc. 2nd ORSA/TIMS Conf. on FMS, Elsevier, Amsterdam, 393–403.Google Scholar
  44. Karp, R.M. (1976), The probabilistic analysis of some combinatorial search algorithms, Proc. Sympos. on New Directions and Recent Results in Algorithms and Complexity, Academic Press, New York.Google Scholar
  45. Karp, R.M., Lenstra, J.K., McDiarmid, C.J.H., Rinnooy Kan, A.H.G. (1985), Probabilistic Analysis, in M.O’hEigeartaigh, J.K. Lenstra, A.H.G. Rinnooy Kan (eds.), Combinatorial Optimization: Annotated Bibliographies, Wiley, Chichester, 52–88.Google Scholar
  46. Kastner, J.K., Hong, S.J. (1984), A review of expert systems, European J. Oper. Res. 18, 285–292.CrossRefGoogle Scholar
  47. Kelly, F.P. (1979), Reversibility and Stochastic Networks, Wiley, New York.Google Scholar
  48. Kleinrock, L. (1975), Queueing Systems, Wiley, New York.Google Scholar
  49. Kowalski, R.A. (1974), Predicate logic as a programming language, Proc. of IFIP 74, North-Holland, Amsterdam, 569–574.Google Scholar
  50. Land, A.H., Doig, A.G. (1960), An automatic method for solving discrete programming problems, Econometrica 28, 497–520.CrossRefGoogle Scholar
  51. Lenz, J., Talavage, J. (1977), General computerized manufacturing systems simulator (GCMS), The optimal planning of computerized manufacturing systems, Report No.7, School of Industrial Engineering, Purdue University.Google Scholar
  52. Mangasarian, O.L. (1969), Nonlinear Programming, McGraw-Hill, New York.Google Scholar
  53. Martin, D.L., Musselmann, K.J. (1984), Simulation in the life cycle of flexible manufacturing systems, Proc. 1st ORSA/ TIMS Conf. on FMS, Ann Arbor, 154–157.Google Scholar
  54. Mayer, R.J., Talavage, J.J. (1976), Simulation of a computerized manufacturing system, Report No. 4, NSF Grant APR 74–15256.Google Scholar
  55. McCarthy, J., Abrahams, P.W., Edwards, D.J., Hart, T.P., Levin, M.I. (1962), Lisp 1.5 Programmer’s Manual, MIT Press, Cambridge.Google Scholar
  56. Müller-Merbach, H. (1981), Heuristics and their design: a survey, European J. Oper. Res. 8, 1–23.CrossRefGoogle Scholar
  57. Newell, A., Simon, H. (1963), GPS, a program that simulates human thought, in E.A. Feigenbaum, J. Feldman (eds.), Computers and Thought, McGraw-Hill, New York, 279–293.Google Scholar
  58. Pereira, L.M., Pereira, F.C.M., Warren, D.H.D (1978), User’s guide to Decsystem-10 Prolog, Occasional Paper No. 15, Department of Artificial Intelligence, University of Edinburgh, Scotland.Google Scholar
  59. Phillips, D.T., Heisterberg, R.J. (1977), Definition, development and implementation of a generalized manufacturing simulator, Report No. GEMS-3–77, Dept. of Industrial Engineering, Texas A&M University, College Station.Google Scholar
  60. Puppe, F. (1986), Expertensysteme, Informatik Spektrum 9, 1–13.Google Scholar
  61. Rathmill, K., Greenwood, N., Houshmand, M. (1982), Computer simulation of flexible manufacturing systems, Proc. 2nd Int. Conf. on FMS, Brighton, 251–280.Google Scholar
  62. Reiser, M. (1981), Mean-value analysis and convolution method for queue-dependent servers in closed queueing networks, Performance Evaluation 1, 7–18.CrossRefGoogle Scholar
  63. Reiser, M., Lavenberg, S.S. (1980), Mean value analysis of closed multichain queueing networks, J. of the ACM 2, 313–322.CrossRefGoogle Scholar
  64. Rolston, L.J. (1985), Modelling flexible manufacturing systems with MAP/1, Ann. Oper. Res. 3, 189–204.CrossRefGoogle Scholar
  65. Roussel, P. (1975), Prolog: Manuel de Reference et d’Utilisation, Groupe d’Intelligence Artificiel, Universite d’Aix-Marseille, Luminy.Google Scholar
  66. Runner, J.A. (1978), CASAM: a simulation analysis for computerized manufacturing systems, NSF Grant APR 74–15256.Google Scholar
  67. Schnupp, P., Nguyen Huu, C.T. (1987), Expertensystem-Praktikum, Springer, Berlin.Google Scholar
  68. Schriber, T.J. (1985), A GPSS/H model for a hypothetical flexible manufacturing system, Ann. Oper. Res. 3, 171–188.CrossRefGoogle Scholar
  69. Schweitzer, P.J. (1979), Approximate analysis of multiclass closed networks of queues, Int. Conf. Stochastic Control and Optimization, Amsterdam.Google Scholar
  70. Shalev-Oven, S., Seidmann, A., Schweitzer, P.J. (1985), Analysis of flexible manufacturing systems with priority scheduling: PMVA, Ann. Oper. Res. 3, 115–139.Google Scholar
  71. Silver, E.A., Vidal, R.V.V., de Werra, D. (1980), A tutorial on heuristic methods, European J. Oper. Res. 5, 153–162.CrossRefGoogle Scholar
  72. Solberg, J. (1977), A mathematical model of computerized manufacturing systems, Proc. 4th Int. Conf. on Prod. Res., Tokyo.Google Scholar
  73. Stefik, M., Bobrow, D.G., Mittal, S., Conway, L. (1983), Knowledge programming in LOOPS: report on an experimental course, The Artificial Intelligence Magazine, 3–13.Google Scholar
  74. Spiegl, P. (1987), Simulation — ein Planungsinstrument flexibler fertigungstechnischer Einrichtungen, CIM Management 1, 51–57.Google Scholar
  75. Spur, G., Hirn, W., Seliger, G., Viehweger, B. (1982), Simulation zur Auslegungsplanung und Optimierung von Produktionssystemen, ZwF 77 (9), 446–452.Google Scholar
  76. Suri, R. (1983), Robustness of queueing network formulae, J. of the ACM 30, 564–594.CrossRefGoogle Scholar
  77. Suri, R. (1985), An overview of evaluative models for flexible manufacturing systems, Ann. Oper. Res. 3, 13–21.CrossRefGoogle Scholar
  78. Suri, R. (1985a), Manufacturing systems modelling: its role and current issues, unveröffentlichtes Manuskript.Google Scholar
  79. Suri, R., Cao, X. (1982), Optimization of flexible manufacturing systems using new techniques in discrete event systems, Proc. 20th Allerton Conf. on Communication Control and Computing, Monticello, Illinois, 434–443.Google Scholar
  80. Suri, R., Diehl, G. (1986), A variable buffer size model and its use in analyzing closed queueing networks with blocking, Man. Sci. 32, 206–224.Google Scholar
  81. Suri, R., Dille, J.W. (1985), A technique for on-line sensitivity analysis of flexible manufacturing systems, Ann. Oper. Res. 3, 381–391.Google Scholar
  82. Suri, R., Hildebrandt, R.R. (1984), Modelling flexible manufacturing systems using mean value analysis, J. Manufacturing Sys. 3, 27–38.CrossRefGoogle Scholar
  83. Suri, R., Zazanis, M. (1985), Robustness of perturbation analysis algorithms for discrete event systems, WP, Havard University.Google Scholar
  84. Warnecke, H., Zipse, T., Zeh, K. (1984), Simulation and computeraided planning of flexible manufacturing systems, Proc. 3rd Int. Conf. on FMS, Boeblingen, 347–360.Google Scholar
  85. Waterman, D.A. (1986), A Guide to Expert Systems, Addison-Wesley, Reading, M.A.Google Scholar
  86. Yao, D.D., Buzacott, J.A. (1985), Modelling a class of state-dependent routing in flexible manufacturing systems, Ann. Oper. Res. 3, 153–168.CrossRefGoogle Scholar
  87. Yao, D.D., Buzacott, J.A. (1985a), Modelling the performance of flexible manufacturing systems, Int. J. Prod. Res. 23, 945–959.CrossRefGoogle Scholar
  88. Yao, D.D., Buzacott, J.A. (1986), Models of flexible manufacturing systems with limited local buffers, Int. J. Prod. Res. 24, 107–118.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Günter Schmidt
    • 1
  1. 1.Berlin 41Deutschland

Personalised recommendations