Skip to main content

Modulation of Catecholamine Release in the Central Nervous System by Multiple Opioid Receptors

  • Chapter
Neurobiology of Opioids

Abstract

Exogenous and endogenous opioids elicit a number of their effects in the organism by modulating the release of transmitters in the peripheral and central nervous system (CNS). This is due to the activation of receptors located at either axon terminals (presynaptic receptors) or at cell somata and/or dendrites (somatodendritic receptors). Indirect effects via neighboring neurons are also possible. In recent years, it has become apparent that opioids are able to inhibit the action potential-induced secretion ofnorepinephrine (NE) and dopamine (DA) in the CNS (Starke 1977; Westfall 1977; Henderson et al. 1979; Vizi 1979; Langer 1981; Szekely and Ronai 1982a,b; Jackisch et al. 1988; Illes 1989). This chapter will review research concerning this topic and focus specifically upon the idea of multiple opioid receptor types in modulating catecholamine release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aghajanian GK, Wang YY (1986) Pertussis toxin blocks the outward currents evoked by opiate and a,-agonists in locus coeruleus neurons. Brain Res 371: 390–394

    Article  PubMed  CAS  Google Scholar 

  • Allgaier C, Hertting G, Kugelgen OV (1987) The adenosine receptor-mediated inhibition of noradrenaline release possibly involves a N-protein and is increased by a-autoreceptor blockade. Br J Pharmacol 90: 403–412

    PubMed  CAS  Google Scholar 

  • Allgaier C, Daschmann B, Sieverling J, Hertting G (1989) Presynaptic K-opioid receptors on noradrenergic nerve terminals couple to G proteins and interact with the a-adrenoceptors. J Neurochem 53: 1629–1635

    Article  PubMed  CAS  Google Scholar 

  • Arbilla S, Langer SZ (1978) Morphine and /3-endorphin inhibit release of noradrenaline from cerebral cortex but not of dopamine from rat striatum. Nature (London) 271: 559–561

    Article  CAS  Google Scholar 

  • Bird SJ, Kuhar MJ (1977) lontophoretic application of opiates to the locus coeruleus. Brain Res 122:523–533

    Article  PubMed  CAS  Google Scholar 

  • Bug W, Williams JT, North RA (1986) Membrane potential measured during potassium-evoked release of noradrenaline from rat brain neurons: effects of normorphine. J Neurochem 47: 652–655

    Article  PubMed  CAS  Google Scholar 

  • Celsen B, Kuschinsky K (1974) Effects of morphine on kinetics of “C-dopamine in rat striatal slices. Naunyn-Schmiedeberg’s Arch Pharmacol 284: 159–165

    Article  CAS  Google Scholar 

  • Chesselet MF, Cheramy A, Reisine TD, Glowinski J (1981) Morphine and S-opiate agonists locally stimulate in vivo dopamine release in cat caudate nucleus. Nature (London) 291: 320–322

    Article  CAS  Google Scholar 

  • Chesselet MF, Cheramy A, Reisine TD, Lubetzki C, Glowinski J, Fournie-Zaluski MC, Roques B (1982) Effects of various opiates including specific delta and mu agonists on dopamine release from nigrostriatal dopaminergic neurons in vitro in the rat and in vivo in the cat. Life Sci 31: 2291–2294

    Article  PubMed  CAS  Google Scholar 

  • Christie MJ, Williams JT, North RA (1987) Cellular mechanisms of opioid tolerance: studies in single brain neurons. J Pharmacol Exp Ther 32: 633–638

    CAS  Google Scholar 

  • Dewar D, Jenner P, Marsden CD (1987) Effects of opioid agonist drugs on the in vitro release of -’H-GABA, `H-dopamine and ‘H-5HT from slices of rat globus pallidus. Biochem Pharmacol 36: 1738–1741

    Article  PubMed  CAS  Google Scholar 

  • Chiara G, Imperato A (1988) Opposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. J Pharmacol Exp Ther 244: 1067–1080

    PubMed  Google Scholar 

  • Diez-Guerra FJ, Augood S, Emson PC, Dyer RG (1986) Morphine inhibits electrically stimulated noradrenaline release from slices of rat medial preoptic area. Neuroendocrinology 43: 89–91

    Article  PubMed  CAS  Google Scholar 

  • Dubocovich ML, Weiner N (1983) Enkephalins modulate [H]dopamine release from rabbit retina in vitro. J Pharmacol Exp Ther 224: 634–639

    PubMed  CAS  Google Scholar 

  • Finnerty EP, Chan SHH (1981) The participation of substantia nigra zona compacta and zona reticulata neurons in morphine supression of caudate spontaneous neuronal activities in the rat. Neuropharmacology 20: 241–246

    Article  PubMed  CAS  Google Scholar 

  • Göthert M, Pohl IM, Wehking E (1979) Effects of presynaptic modulators on Ca“ -induced noradrenaline release from central noradrenergic neurons. Noradrenaline and enkephalin inhibit release by decreasing depolarization-induced Ca ’ influx Naunyn-Schmiedeberg’s Arch Pharmacol 307: 21–27

    Article  Google Scholar 

  • Gudelsky GA, Porter JC (1979) Morphine-and opioid peptide-induced inhibition of the release of dopamine from tuberoinfundibular neurons. Life Sci 25: 1697–1702

    Article  PubMed  CAS  Google Scholar 

  • Guyenet PG, Aghajanian GK (1979) ACh, substance P and Met-enkephalin in the locus coeruleus: pharmacological evidence for independent sites of action. Eur J Pharmacol 53: 319–328

    Article  PubMed  CAS  Google Scholar 

  • Hagan RM, Hughes IE (1984) Opioid receptor sub-types involved in the control of transmitter release in cortex of the brain of the rat. Neuropharmacology 23: 491–495

    Article  PubMed  CAS  Google Scholar 

  • Haskins JT, Moss RL (1983) Differential effects of morphine, dopamine and prolactin administered iontophoretically on arcuate hypothalamic neurones. Brain Res 268: 185–188

    Article  PubMed  CAS  Google Scholar 

  • Haskins JT, Gudelsky GA, Moss RL, Porter JC (1981) Iontophoresis of morphine into the arcuate nucleus: effects on dopamine concentrations in hypophysial portal plasma and serum prolactin concentrations. Endocrinology 108: 767–771

    Article  PubMed  CAS  Google Scholar 

  • Henderson G, Hughes J, Kosterlitz HW (1979) Modification of catecholamine release by narcotic analgesics and opioid peptides. In: Paton DM (ed) The release of catecholamines from adrenergic neurons. Pergamon, Oxford, pp 217–228

    Google Scholar 

  • Hommer DW, Pert A (1983) The actions of opiates in the rat substantia nigra: an electrophysiological analysis. Peptides 4: 603–607

    Article  PubMed  CAS  Google Scholar 

  • Ines P (1986) Mechanisms of receptor-mediated modulation of transmitter release in noradrenergic, cholinergic and sensory neurons. Neuroscience 17: 909–928

    Article  Google Scholar 

  • Ines P (1989) Modulation of transmitter and hormone release by multiple neuronal opioid receptors. Rev Physiol Biochem Pharmacol 112: 139–233

    Article  Google Scholar 

  • Iwatsubo K, Clouet DH (1977) Effects of morphine and haloperidol on the electrical activity of rat nigrostriatal neurons. J Pharmacol Exp Ther 202: 429–436

    PubMed  CAS  Google Scholar 

  • Jackisch R, Geppert M, Ines P (1986) Characterization of opioid receptors modulating noradrenaline release in the hippocampus of the rabbit. J Neurochem 46: 1802–1810

    Article  PubMed  CAS  Google Scholar 

  • Jackisch R, Geppert M, Lupp A, Huang HY, Iiles P (1988) Types of opioid receptors modulating neurotransmitter release in discrete brain regions. In: Ines P, Farsang C (eds) Regulatory roles of opioid peptides. VCH, Weinheim, pp 240–258

    Google Scholar 

  • Jhamandas K, Marien M (1987) Glutamate-evoked release of endogenous brain dopamine: inhibition by an excitatory amino acid antagonist and an enkephalin analogue. Br J Pharmacol 90: 641–650

    PubMed  CAS  Google Scholar 

  • Jones CA, Marchbanks RM (1982) Effects of(D-alanine2, methione’)enkephalinamide on the release of acetylcholine and noradrenaline from brain slices and isolated nerve terminals. Biochem Pharmacol 31: 455–458

    Article  PubMed  CAS  Google Scholar 

  • Jurna I (1981) Changes in the activity of nigral neurones induced by morphine and other opiates in rats with an intact brain and after prenigral decerebration. Naunyn-Schmiedeberg’s Arch Pharmacol 316: 149–154

    Article  CAS  Google Scholar 

  • KorfJ, Bunney BS, Aghajanian GK (1974) Noradrenergic neurons: morphine inhibition of spontaneous activity. Eur J Pharmacol 25: 165–169

    Article  Google Scholar 

  • Kosterlitz HW (1985) Opioid peptides and their receptors. Proc R Soc London Ser B 225: 27–40

    Article  CAS  Google Scholar 

  • Langer SZ (1981) Presynaptic regulation of the release of catecholamines. Pharmacol Rev 32: 337–361

    Google Scholar 

  • Lavin A, Garcia-Munoz M (1985) Electrophysiological changes in substantia nigra after dynorphin administration. Brain Res 369: 298–302

    Article  Google Scholar 

  • Leadem CA, Crowley WR, Simpkins JW, Kalra SP (1985) Effects of naloxone on catecholamine and LHRH release from the perifused hypothalamus of the steroid primed rat. Neuroendocrinology 40: 497–500

    Article  PubMed  CAS  Google Scholar 

  • Leslie FM (1987) Methods used for the study of opioid receptors. Pharmacol Rev 39: 197–249

    PubMed  CAS  Google Scholar 

  • Limberger N, Späth L, Hölting T, Starke K (1986) Mutual interaction between presynaptic a,-adren-oceptors and opioid ic-receptors at the noradrenergic axons of rabbit brain cortex. Naunyn-Schmiedeberg’s Arch Pharmacol 334: 166–171

    Article  CAS  Google Scholar 

  • Limberger N, Singer EA, Starke K (1988a) Only activated but not non-activated presynaptic add-autoreceptors interfere with neighbouring presynaptic receptor mechanisms. Naunyn-Schmiedeberg’s Arch Pharmacol 338: 62–67

    CAS  Google Scholar 

  • Limberger N, Späth L, Starke K (1988b) Presynaptic a.,-adrenoceptor, opioid ic-receptor and adenosine A, -receptor interactions on noradrenaline release in rabbit brain cortex. Naunyn-Schmiedeberg’s Arch Pharmacol 338: 53–61

    CAS  Google Scholar 

  • Loh HH, Brase DA, Sampath-Khanna S, Mar JB, Way EL (1976) ß-Endorphin in vitro inhibition of striatal dopamine release. Nature (London) 264: 567–568

    Article  CAS  Google Scholar 

  • Lord JAH, Waterfield AA, Hughes J, Kosterlitz HW (1977) Endogenous opioid peptides: multiple agonists and receptors. Nature (London) 267: 495–499

    Article  CAS  Google Scholar 

  • Lubetzki C, Chesselet MF, Glowinski J (1982) Modulation of dopamine release in rat striatal slices by delta opiate agonists. J Pharmacol Exp Ther 222: 435–440

    PubMed  CAS  Google Scholar 

  • Manallack DT, Beart PM, Gundlach AL (1986) Psychotomimetic a-opiates and PCP. Trends Pharmacol Sci 7: 448–451

    Article  CAS  Google Scholar 

  • Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE (1976) The effects of morphine-and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197: 517–532

    PubMed  CAS  Google Scholar 

  • McFadzean I, Lacey MG, Hill RG, Henderson G (1987) Kappa opioid receptor activation depresses excitatory synaptic input to rat locus coeruleus neurons in vitro. Neuroscience 20: 231–239

    Article  PubMed  CAS  Google Scholar 

  • Montel H, Starke K, Weber F (1974a) Influence of morphine and naloxone on the release of nora- drenaline from rat brain cortex slices. Naunyn-Schmiedeberg’s Arch Pharmacol 283: 357–369

    Article  CAS  Google Scholar 

  • Montel H, Starke K, Weber F (1974b) Influence of fentanyl, levorphanol and pethidine on the release of noradrenaline from rat brain cortex slices. Naunyn-Schmiedeberg’s Arch Pharmacol 283: 371–377

    Article  CAS  Google Scholar 

  • Montel H, Starke K, Taube HD (1975) Influence of morphine and naloxone on the release of noradrenaline from rat cerebellar cortex slices. Naunyn-Schmiedeberg’s Arch Pharmacol 288: 427–433

    Article  CAS  Google Scholar 

  • Mulder AH, Wardeh G, Hogenboom F, Frankhuyzen AL (1984) IC-and 8-opioid receptor agonists differentially inhibit striatal dopamine and acetylcholine release. Nature (London) 308: 278–280

    Article  CAS  Google Scholar 

  • Mulder AH, Hogenboom F, Wardeh G, Schoffelmeer ANM (1987) Morphine and enkephalins potently inhibit rH]noradrenaline release from rat brain cortex synaptosomes: further evidence for a presynaptic localization of p-opioid receptors. J Neurochem 48: 1043–1047

    Article  PubMed  CAS  Google Scholar 

  • Mulder AH, Frankhuyzen AL, Schoffelmeer ANM (1988) Modulation by opioid peptides of dopaminergic neurotransmission at the pre-and postsynaptic level. In: I1les P, Farsang C (eds) Regulatory roles of opioid peptides. VCH, Weinheim, pp 268–281

    Google Scholar 

  • Nörenberg W, Illes P (1989) Blockade of somato-dendritic a,-adrenoceptors increases the inhibitory effect of p,-opioid agonists on the firing rate of rat locus coeruleus neurons. Naunyn-Schmiedeberg’s Arch Pharmacol 339: 103

    Google Scholar 

  • North RA (1986a) Receptors on individual neurons. Neuroscience 17: 899–907

    Article  CAS  Google Scholar 

  • North RA (1986b) Opioid receptor types and membrane ion channels. Trends Neurosci 9: 114–117

    Article  CAS  Google Scholar 

  • North RA, Williams JT (1985) On the potassium conductance increased by opioids in rat locus coeruleus neurons. J Physiol 364: 265–280

    PubMed  CAS  Google Scholar 

  • North RA, Williams JT, Surprenant A, Christie MJ (1987) U and S receptors belong to a family of receptors that are coupled to potassium channels. Proc Natl Acad Sci USA 84: 5487–5491

    Article  PubMed  CAS  Google Scholar 

  • Pepper CM, Henderson G (1980) Opiates and opioid peptides hyperpolarize locus coeruleus neurons in vitro. Science 209: 394–396

    Article  PubMed  CAS  Google Scholar 

  • Petit F, Hamon M, Fournie-Zaluski MC, Roques BP, Glowinski J (1986) Further evidence for a role of S-opiate receptors in the presynaptic regulation of newly synthesized dopamine release. Eur J Pharmacol 126: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Reymond MJ, Kaur CK, Porter JC (1983) An inhibitory role for morphine on the release of dopamine into hypophysial portal blood and on the synthesis of dopamine in tuberoinfundibularneurons. Brain Res 262: 253–258

    Article  PubMed  CAS  Google Scholar 

  • Schoffelmeer ANM, Mulder AH (1983) Differential control of Ca’ -dependent [’H]noradrenaline release from rat brain slices through presynaptic opiate receptors and a-adrenoceptors. Eur J Pharmacol 87: 449–458

    Article  PubMed  CAS  Google Scholar 

  • Schoffelmeer ANM, Mulder AH (1984) Presynaptic opiate receptor-and a,-adrenoceptor-mediated inhibition of noradrenaline release in the rat brain: role of hyperpolarization? Eur J Pharmacol 105: 129–135

    Article  PubMed  CAS  Google Scholar 

  • Schoffelmeer ANM, Putters J, Mulder AH (1986a) Activation of presynaptic a. -adrenoceptors attenuates the inhibitory effect of p-opioid receptor agonists on noradrenaline release from brain slices. Naunyn-Schmiedeberg’s Arch Pharmacol 333: 377–380

    Article  CAS  Google Scholar 

  • Schoffelmeer ANM, Wierenga EA, Mulder AH (1986b) Role of adenylate cyclase in presynaptic a.,-adrenoceptor-and µ-opioid receptor-mediated inhibition of [2H]noradrenaline release from rat brain cortex slices. J Neurochem 46: 1711–1717

    Article  CAS  Google Scholar 

  • Schoffelmeer ANM, Rice KC, Jacobson AE, Gelderen JG, Hogenboom F, Heijna MH, Mulder AH (1988) P-, S-and K-opioid receptor-mediated inhibition of neurotransmitter release and adenylate cyclase activity in rat brain slices: studies with fentanyl isothiocyanate. Eur J Pharmacol 154: 169–178

    Article  PubMed  CAS  Google Scholar 

  • Schulz R, Wüster M, Herz A (1981) Pharmacological characterization of the r-opiate receptor. J Pharmacol Exp Ther 216: 604–606

    PubMed  CAS  Google Scholar 

  • Sonders MS, Keana JFW, Weber E (1988) Phencyclidine and psychotomimetic sigma opiates: recent insights into their biochemical and physiological sites of action. Trends Neurosci 11: 37–40

    Article  PubMed  CAS  Google Scholar 

  • Starke K (1977) Regulation of noradrenaline release by presynaptic receptor systems. Rev Physiol Biochem Pharmacol 7: 1–124

    Article  Google Scholar 

  • Starr MS (1978) Investigation of possible interactions between substance P and transmitter mechanisms in the substantia nigra and corpus striatum of the rat. J Pharm Pharmacol 30: 359–363

    Article  PubMed  CAS  Google Scholar 

  • Subramanian N, Mitznegg P, Sprügel W, Domschke W, Domschke S, Wunsch E, Demling L (1977) Influence of enkephalin on K- -evoked efflux of putative neurotransmitters in rat brain. Naunyn-Schmiedeberg’s Arch Pharmacol 299: 163–165

    Article  CAS  Google Scholar 

  • Szekely JI, Ronai AZ (1982a) Opioid peptides, vol 1. Research methods. CRC, Boca Raton

    Google Scholar 

  • Szekely JI, Ronai AZ (1982b) Opioid peptides, vol 2. Pharmacology. CRC. Boca Raton

    Google Scholar 

  • Taube HD, Starke K, Borowski E (1977) Presynaptic receptor systems on the noradrenergic neurons of rat brain. Nauyny-Schmiedeberg’s Arch Pharmacol 299: 123–141

    Article  CAS  Google Scholar 

  • Vizi ES (1979) Presynaptic modulation of neurochemical transmission. Prog Neurobiol 12: 181–290

    Article  PubMed  CAS  Google Scholar 

  • Walker JM, Thompson LA, Frascella J, Friederich MW (1987) Opposite effects of and Kopiates on the firing-rate of dopamine cells in the substantia nigra of the rat. Eur J Pharmacol 134: 53–59

    Article  PubMed  CAS  Google Scholar 

  • Werling LL, Brown SR, Cox BM (1987) Opioid receptor regulation of the release of norepinephrine in brain. Neuropharmacology 26: 987–996

    Article  PubMed  CAS  Google Scholar 

  • Werling LL, Frattali A, Portoghese PS, Takemori AE, Cox BM (1988a) Kappa receptor regulation of dopamine release from striatum and cortex of rats and guinea pigs. J Pharmacol Exp Ther 246: 282–286

    CAS  Google Scholar 

  • Werling LL, McMahon PN, Cox BM (1988b) Selective tolerance at mu and kappa opioid receptors modulating norepinephrine release in guinea pig cortex. J Pharmacol Exp Ther 247: 1103–1106

    CAS  Google Scholar 

  • Werling LL, McMahon PN, Portoghese PS, Takemori AE, Cox BM (1989) Selective opioid antagonist effects on opioid-induced inhibition of release of norepinephrine in guinea-pig cortex. Neuropharmacology 28: 103–107

    Article  PubMed  CAS  Google Scholar 

  • Westfall TC (1977) Local regulation of adrenergic neurotransmission. Physiol Rev 57: 659–728

    PubMed  CAS  Google Scholar 

  • Westfall TC, Grant H, Naes L, Meldrum M (1983) The effect of opioid drugs on the release of dopamine and 5-hydroxytryptamine from rat striatum following activation of nicotinic-cholinergie receptors. Eur J Pharmacol 92: 35–42

    Article  PubMed  CAS  Google Scholar 

  • Wichmann T, Starke K (1988) Uptake, release and modulation of release of noradrenaline in rabbit superior colliculus. Neuroscience 26: 621–634

    Article  PubMed  CAS  Google Scholar 

  • Wilkes MM, Yen SSC (1980) Reduction by /3-endorphin of the efflux of dopamine and DOPAC from superfused medial basal hypothalamus. Life Sci 27: 1387–1391

    Article  PubMed  CAS  Google Scholar 

  • Williams JT, North RA (1984) Opiate receptor interactions on single locus coeruleus neurons. Mol Pharmacol 26: 489–497

    PubMed  CAS  Google Scholar 

  • Williams JT, Egan TM, North RA (1982) Enkephalin opens potassium channels on mammalian central neurons. Nature (London) 299: 74–77

    Article  CAS  Google Scholar 

  • Williams J, Henderson G, North A (1986) Locus coeruleus neurons. In: Dingledine R (ed) Brain slices. Plenum, New York, pp 297–311

    Google Scholar 

  • Zukin RS, Zukin SR (1984) The case for multiple opiate receptors. Trends Neurosci 7: 160–164

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Illes, P., Jackisch, R. (1991). Modulation of Catecholamine Release in the Central Nervous System by Multiple Opioid Receptors. In: Almeida, O.F.X., Shippenberg, T.S. (eds) Neurobiology of Opioids. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46660-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46660-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46662-5

  • Online ISBN: 978-3-642-46660-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics