Advertisement

Inhibitors Around the Antimycin-Sensitive Site in the Respiratory Chain

  • Z. Kaniuga
  • J. Bryła
  • E. C. Slater
Part of the Colloquium der Gesellschaft für Biologische Chemie in Mosbach Baden book series (MOSBACH, volume 20)

Abstract

The region of the respiratory chain between cytochromes b and c1 is affected by several compounds in such a way as to lead to inhibition of electron transport. The site of action of these inhibitors is usually called the “antimycin-sensitive” site because antimycin [1] is the most firmly bound. Three main classes of inhibitors will be considered here: (i) antimycin, (ii) alkyl derivatives of 4-hydroxyquinoline-N-oxide and (iii) alkyl derivatives of 3-hydroxy-1,4-naphthoquinone. Their application in studies on the structure and function of the respiratory chain has been manyfold: (a) in elucidation of the sequence of the components [58], (b) in reconstitution of the respiratory chain [39], (c) in oxidative phosphorylation [59] especially in estimating the sites of phosphorylation and (d) in studies on the reversal of the respiratory chain [33, 41].

Keywords

Respiratory Chain Reductase Activity Sigmoidal Curve Alkyl Side Chain Inhibition Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmad, K., H. G. Schneider, and F. M. Strong: Arch. Biochem. 28, 281 (1950).PubMedGoogle Scholar
  2. 2.
    Arnon, D. I., H. Y. Tsujimoto, and B. H. Mcswain: Proc. nat. Acad. Sci. (Wash.) 51, 1274 (1964).CrossRefGoogle Scholar
  3. 3.
    Ball, E. G., C. B. Anfinsen, and O. Cooper: J. biol. Chem. 168, 257 (1947).PubMedGoogle Scholar
  4. 4.
    Baltscheffsky, H.: Acta chem. scand. 14, 264 (1960).CrossRefGoogle Scholar
  5. 5.
    Baum, H., H. I. Silman, J. S. Rieske, and S. H. Lipton: J. biol. Chem. 242, 4876 (1967).PubMedGoogle Scholar
  6. 6.
    Boyer, P.: In: King, T. E., H. S. Mason, and M. Morrison: Oxidases and related redox systems, Vol. 2, p. 984. New York: Wiley 1965.Google Scholar
  7. 7.
    Bryła, J., and Z. Kaniuga: Biochim. biophys. Acta 153, 910 (1968).PubMedCrossRefGoogle Scholar
  8. 8.
    Bryła, J., and E. C. Slater: Biochim. biophys. Acta (in press).Google Scholar
  9. 9.
    Bryła, J., and E. C. Slater: Biochim. biophys. Acta (in press).Google Scholar
  10. 10.
    Chance, B.: Nature (Lond.) 169, 215 (1952).CrossRefGoogle Scholar
  11. 11.
    Chance, B.: J. biol. Chem. 233, 1223 (1958).PubMedGoogle Scholar
  12. 11a.
    Chance, B., C. P. Lee, and L. Mela: Fed. Proc. 26, 1341 (1967).PubMedGoogle Scholar
  13. 12.
    Chance, B., G. Hollunger, and B. Hagihara: Biochem. biophys. Res. Commun. 8, 180 (1962).PubMedCrossRefGoogle Scholar
  14. 13.
    Chance, B., and G. R. Williams: Advanc. Enzymol. 17, 65 (1956).Google Scholar
  15. 14.
    VAN Dam, K., and E. C. Slater: Proc. nat. Acad. Sci. (Wash.) 58, 2015 (1967).CrossRefGoogle Scholar
  16. 15.
    Deul, D. H., and M. B. Thorn: Biochim. biophys. Acta 59, 426 (1962).PubMedCrossRefGoogle Scholar
  17. 16.
    Dickie, J. P., M. B. Loomans, T. M. Farley, and F. M. Strong: J. med. Chem. 6, 424 (1963).PubMedCrossRefGoogle Scholar
  18. 17.
    Estabrook, R. W.: J. biol. Chem. 230, 735 (1958).PubMedGoogle Scholar
  19. 18.
    Estabrook, R. Biochim. biophys. Acta 60, 236 (1962).PubMedCrossRefGoogle Scholar
  20. 19.
    Fewson, C. A., C. C. Black, and M. Gibbs: Plant Physiol. 78, 680 (1963).CrossRefGoogle Scholar
  21. 20.
    Geller, D. M., and F. Lipmann: J. biol. Chem. 235, 2478 (1960).PubMedGoogle Scholar
  22. 21.
    Gerhart, I. C., and A. B. Pardee: Cold Spr. Harb. Symp. quant. Biol. 28, 491 (1963).CrossRefGoogle Scholar
  23. 22.
    Harris, R. A., J. T. Penniston, I. Assai, and D. E. Green: Proc. nat. Acad. Sci. (Wash.) 59, 830 (1968).CrossRefGoogle Scholar
  24. 23.
    Hatefi, Y., A. G. Haavik, and P. Jurtschuk: Biochim. biophys. Acta 52, 106 (1961).PubMedCrossRefGoogle Scholar
  25. 24.
    Hendlin, D., and F. Cook: Biochim. biophys. Res. Commun. 2, 71 (1960).CrossRefGoogle Scholar
  26. 25.
    Hülsmann, W. C.: Over het mechanisme van de ademhalingsketen-fosforylering. M. D. Thesis, Amsterdam 1958.Google Scholar
  27. 26.
    Howland, J. L.: Biochim. biophys. Acta 73, 665 (1963).PubMedCrossRefGoogle Scholar
  28. 27.
    Howland, J. L.: Biochim. biophys. Acta 77, 419 (1963).PubMedCrossRefGoogle Scholar
  29. 28.
    Howland, J. L.: Biochim. biophys. Acta 77, 659 (1963).CrossRefGoogle Scholar
  30. 29.
    Howland, J. L.: Biochim. biophys. Acta 105, 205 (1965).PubMedGoogle Scholar
  31. 30.
    Howland, J. L.: Biochim. biophys. Acta 131, 247 (1967).PubMedCrossRefGoogle Scholar
  32. 31.
    Howland, J. L.: Biochim. biophys. Acta 153, 309 (1968).PubMedCrossRefGoogle Scholar
  33. 33.
    Kaniuga, Z., and J. Bryla: Post. Biochem. 12, 451 (1966).Google Scholar
  34. 34.
    Kaniuga, Z., and J. Bryla: Abstr. 5th Meeting Fed. Europ. Biochem. Socs., p. 293, Prague 1968.Google Scholar
  35. 35.
    Kaniuga, Z., and E. C. Slater: Proc. 6th Meeting Fed. Europ. Biochem. Socs., Madrid 1969 (in press).Google Scholar
  36. 36.
    Kaniuga, Z., A. Gardas, and J. Bryła: Biochim. biophys. Acta (Amst.) 153, 60 (1968).CrossRefGoogle Scholar
  37. 37.
    Kaniuga, Z., J. Bryla, A. Gardas, and I. Chmielewska: Abstr. 3rd Meeting Fed. Europ. Biochem. Socs., Warsaw 1966, p. 140. London and Warsaw: Academic Press and Polish Scientific Publishers 1966.Google Scholar
  38. 38.
    Keilin, D., and E. F. Hartree: Nature (Lond.) 176, 200 (1955).CrossRefGoogle Scholar
  39. 39.
    King, T. E.: Advanc. Enzymol. 28, 218 (1966).Google Scholar
  40. 40.
    Kirschbaum, I., and W. W. Wainio: Biochim. biophys. Acta 113, 27 (1963).Google Scholar
  41. 41.
    Klingenberg, M.: Angew. Chem. 75, 900 (1963).CrossRefGoogle Scholar
  42. 42.
    Koshland, D. F., Jr., G. Nemethy, and D. Filmer: Biochemistry 5, 365 (1966).PubMedCrossRefGoogle Scholar
  43. 43.
    Lightbown, J. W., and F. L. Jackson: Biochem. J. G3, 130 (1956).Google Scholar
  44. 44.
    Monod, J., J. Wyman, and J. P. Changeux: J. molec. Biol. 12, 88 (1965).PubMedCrossRefGoogle Scholar
  45. 45.
    Nijs, P.: Biochim. biophys. Acta 143, 454 (1967).PubMedCrossRefGoogle Scholar
  46. 46.
    Nishimura, M.: Biochim. biophys. Acta 66, 17 (1963).PubMedCrossRefGoogle Scholar
  47. 47.
    Potter, V. R., and A. E. Reif: J. biol. Chem. 194, 287 (1952).PubMedGoogle Scholar
  48. 48.
    Pumphrey, A. M.: J. biol. Chem. 237, 2384 (1962).PubMedGoogle Scholar
  49. 49.
    Reif, A. E., and V. R. Potter: J. biol. Chem. 205, 279 (1953).PubMedGoogle Scholar
  50. 50.
    Reporter, M.: Biochemistry 5, 2416 (1966).PubMedCrossRefGoogle Scholar
  51. 51.
    Rieske, J. S.: In: Gottlieb, D., and P. D. Shaw: Antibiotics, Vol. 1, p. 542. Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  52. 52.
    Rieske, J. S., and W. S. Zaugg: Biochem. biophys. Res. Commun. 8, 421 (1962).PubMedCrossRefGoogle Scholar
  53. 53.
    Rieske, J. S., S. H. Lipton, H. Baum, and H. I. Silman: J. biol. Chem. 242, 4888 (1967).PubMedGoogle Scholar
  54. 54.
    Rieske, J. S., H. Baum, C. D. Stoner, and S. H. Lipton: J. biol. Chem. 242, 4854 (1967).PubMedGoogle Scholar
  55. 55.
    Shore, I. B., and W. W. Wainio: J. biol. Chem. 240, 3165 (1965).PubMedGoogle Scholar
  56. 56.
    Slater, E. C.: Biochem. J. 45, 14 (1949).Google Scholar
  57. 57.
    Slater, E. C.: Biochem. J. 45, 130 (1949).Google Scholar
  58. 58.
    Slater, E. C.: Advanc. Enzymol. 20, 147 (1958).Google Scholar
  59. 59.
    Slater, E. C.: In: Florkin, M., and E. M. Stotz, Comprehensive biochemistry, Vol. 14, p. 327. Amsterdam: Elsevier 1966.Google Scholar
  60. 59a.
    Slater, E. C.: In: Slater, E. C., Z. Kaniuga, and L. Wojtczak: Biochemistry of mitochondria, p. 1. London and Warsaw: Academic Press and Polish Scientific Publishers 1967.Google Scholar
  61. 60.
    Slater, E. C.: Proc. 5th Meeting Fed. Europ. Biochem. Socs., Prague 1968 (in press).Google Scholar
  62. 61.
    Slater, E. C.:, and J. P. Colpa-Boonstra: In: Falk, I. E., R. Lemberg, and R. K. Morton: Haematin enzymes, Vol. 2, p. 575. London: Pergamon Press 1961.Google Scholar
  63. 62.
    Smith, L., and M. Baltschefesky: J. biol. Chem. 234, 1575 (1960).Google Scholar
  64. 63.
    Storey, R. T.: Arch. Biochem. 121, 271 (1967).PubMedCrossRefGoogle Scholar
  65. 64.
    Tagawa, K., H. Y. Tsujimoto, and D. I. Arnon: Proc. nat. Acad. Sci. (Wash.) 49, 567; 50, 544 (1963).CrossRefGoogle Scholar
  66. 65.
    Takemori, S., and T. E. King: J. biol. Chem. 239, 3546 (1964).PubMedGoogle Scholar
  67. 66.
    Van Tamelen, E. E., J. P. Dickie, M. E. Loomans, R. S. Dewey, and F. M. Strong: J. Amer. Chem. Soc. 83, 1639 (1961).CrossRefGoogle Scholar
  68. 67.
    Tappel, A. L.: Biochem. Pharmacol. 3, 289 (1960).PubMedCrossRefGoogle Scholar
  69. 68.
    Thorn, M. B.: Biochem. J. 63, 420 (1956).PubMedGoogle Scholar
  70. 69.
    Tzagoloff, A., P. C. Yang, D. C. Wharton, and J. S. Rieske: Biochim biophys. Acta 96, 1 (1965).PubMedGoogle Scholar
  71. 70.
    Wendel, W. B.: Fed. Proc. 5, 406 (1946).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1969

Authors and Affiliations

  • Z. Kaniuga
    • 1
  • J. Bryła
    • 1
  • E. C. Slater
    • 2
  1. 1.Department of BiochemistryWarsaw UniversityPoland
  2. 2.Laboratory of Biochemistry, B.C.P. Jansen InstituteUniversity of AmsterdamThe Netherlands

Personalised recommendations