Advertisement

Abstract

In 1815 Prout remarked that many atomic weights, expressed in the hydrogen atomic weight as a unit, were nearly whole numbers. He therefore suggested that the atoms of all elements were tightly bound combinations of hydrogen atoms. When slightly later it was discovered that some atomic weights were definitely non-integral numbers, one had either to abandon this hypothesis or to assume that atoms of one element could have different masses. The first alternative was chosen. In 1906, however, Boltwood 1 discovered ionium, which proved to be chemically inseparable from thorium, whereas the radioactive properties and the atomic weights of both substances were different. Within a short time many more examples of such a behaviour became known, and in 1910 Soddy 2 concluded that atoms of one element could have different masses; he suggested the name isotopes for bodies with the same chemical properties but different atomic weights. This discovery revived Prout’s hypothesis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General references

  1. [1]
    Feather, N.: Nuclear Stability Rules. Cambridge: The University Press 1952.zbMATHGoogle Scholar
  2. [2]
    Huntley, H. E.: Nuclear Species. London: McMillan 1954.Google Scholar
  3. [3]
    Mayer, M. G., and J. H. D. Jensen: Elementary Theory of Nuclear Shell structure. New York: Wiley & Sons.Google Scholar
  4. [4]
    Wapstra, A. H.: Physica, Haag 21, 367 (1955).ADSCrossRefGoogle Scholar
  5. [Ö]
    Wapstra, A. H.: Physica, Haag 21 , 385 (1955).ADSCrossRefGoogle Scholar
  6. Huizenga, J. R.: Physica, Haag 21, 410 (1955). — The above three papers together represent a complete recomputation of binding energies from experimental data.ADSCrossRefGoogle Scholar
  7. Kohman, T. P.: Phys. Rev. 85, 530 (1952). — A discussion of ß stability as connected with the spin terms.ADSCrossRefGoogle Scholar
  8. Wapstra, A. H.: Physica, Haag 18 83 (1952). — An attempt to explain the course of ß stability by adding magic number terms to the Bethe-Weizsäcker formula.ADSCrossRefGoogle Scholar
  9. Green, A. E. S., and N. A. Engler: Phys. Rev. 91, 40 (1953).ADSCrossRefGoogle Scholar
  10. [10]
    Green, A. E. S., and D. F. Edwards: Phys. Rev. 91, 46 (1953).ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    Green, A. E. S.: Phys. Rev. 95, 1006 (1954). — These three papers consider various aspects of the problem of total binding energies and neutron binding energies.ADSCrossRefGoogle Scholar
  12. [12]
    Bethe, H.A., and R.F. Bacher: Rev. Mod. Phys. 8, 82 (1936). — This review of nuclear physics contains the first derivation of the Bethe-Weizsäcker formula in the form in which it is mostly used.ADSCrossRefGoogle Scholar
  13. [13]
    Mattauch, J., and S. Flügge: Kernphysikalische Tabellen. Berlin: Springer 1942 (Nuclear Physics Tables. New York: Interscience Publ,, Inc. 1946). — A table of nuclear properties with an introduction into the state of nuclear physics in 1942.CrossRefzbMATHGoogle Scholar
  14. [14]
    Joliot-Curie, I.: J. Phys. Radium 6, 209 (1945). — An earlier empirical evaluation of the parameter functions in the binding energy equationCrossRefGoogle Scholar
  15. [15]
    Feenberg, E.: Rev. Mod. Phys. 19, 239 (1947) — A discussion of the Bethe-Weizsäcker formula in the Hght of empirics.ADSCrossRefGoogle Scholar
  16. [16]
    Feather, N.: Proc. Roy. Soc. Edinburgh 63, 242 (1952). — Phil. Mag. Suppl. 2, 141 (1953). — Papers about various aspects of ß decay and neutron binding energy systematics.Google Scholar
  17. [17]
    Coryell, C. D.: Ann. Rev. Nucl. Sci. 2, 305 (1953).ADSCrossRefGoogle Scholar
  18. [18]
    Bouchez, R., J. Robert and J. Tobailem: J. Phys. Radium 14, 281 (1953). — Recent discussions of ß systematics with empirical evaluations of the functions in the binding energy equation with a special view to computing ß decay energies.CrossRefGoogle Scholar
  19. [19]
    Suess, H. E., and J. H. D. Jensen: Phys. Rev. 81, 1071 (1951). — Ark. Fys. 3, 577 (1951). — Papers about ß systematics, giving the first detailed explanation of the absence of ß stable isotopes of elements 43 and 61.ADSCrossRefGoogle Scholar
  20. [20]
    Haxel, O., J. H. D. Jensen and H. E. Suess: Ergebn. exakt. Naturw. 26, 244 (1952). — Discusses (among other things) magic number influences on α decay, ß decay and neutron binding energy systematics.CrossRefGoogle Scholar
  21. [21]
    Way, K., and M. Wood: Phys. Rev. 94, 119 (1954). — A recent paper on ß decay systematics.ADSCrossRefGoogle Scholar
  22. [22]
    Kumar, K, and M. A. Preston: Canad. J. Phys. 32, 298 (1955). — Gives an empirical derivation of the functions in the binding energy equation together with a discussion upon the vahdity of the Bethe-Weizsäcker formula.ADSCrossRefGoogle Scholar
  23. [23]
    Metropolis, N., and G. Reitwiesner: Table of Atomic Masses, Argonne National Laboratory.Google Scholar
  24. [24]
    Martin, C. N.: Tables Numeriques de Physique Nucleaire. Paris: Gauthier-Villars 1954. — Tables giving nuclear masses etc. computed from the Bethe-Weizsäcker formula; both use, however, older values for the constants.zbMATHGoogle Scholar
  25. [25]
    Wigner, E.: Phys. Rev. 51, 106, 947 (1937). — Derives a binding energy formula used sometimes instead of the Bethe-Weizsäcker formula.ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    Glueckauf, E.: Proc. Phys. Soc. Lond. 61, 25 (1948). — Discusses α decay energy systematics; describes the discovery of the odd-mass spin term.ADSCrossRefGoogle Scholar
  27. [27]
    Pryce, M. H. L.: Proc. Phys. Soc. Lond. A 63, 692 (1950). — A discussion of the bearing of α systematics on the magic number problem.ADSGoogle Scholar
  28. [28]
    Perlman, I., A. Ghiorso and G. T. Seaborg: Phys. Rev. 77, 26 (1950). — A standard paper on a desintegration systematicsADSCrossRefGoogle Scholar
  29. for a more recent discussion see I. Perlman and E. Asaro: Ann. Rev. Nucl. Sci. 4, 157 (1954). ADSCrossRefGoogle Scholar
  30. [29]
    Harvey, J. A.: Phys. Rev. 81, 353 (1951). — One of the first papers on neutron binding energy systematics.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag OHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • A. H. Wapstra

There are no affiliations available

Personalised recommendations