Piezoelectricity, Electrostriction and Ferroelectricity

  • P. W. ForsberghJr.
Part of the Encyclopedia of Physics / Handbuch der Physik book series (HDBPHYS, volume 4 / 17)


Piezoelectricity was discovered in 1880 by the brothers Jacques and Pierre Curie [5]. Pressing a piezoelectric crystal plate between two electrodes causes charge to flow through a galvanometer. Removal of the compressing weight results in an opposite flow of charge.


Barium Titanate Curie Point Ferroelectric Phase Spontaneous Polarization Piezoelectric Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General references

  1. [1]
    Baumgartner, H., F. Jona and W. Känzig: Seignetteelectrizität. Ergebn. exakt. Naturwiss. 23, 235 (1950). A review containing certain details concerning KDP and rochelle salt not mentioned here.Google Scholar
  2. [2]
    Bergmann, L.: Der Ultraschall and seine Anwendung in Wissenschaft and Technik. Stuttgart: Hirzel 1954. A standard work brought up to date.Google Scholar
  3. [3]
    Böttcher, C. J. F.: Theory of Dielectric Polarization. Amsterdam: Elsevier 1951. Includes a chapter on piezoelectricity and ferroelectricity.Google Scholar
  4. [4]
    Cady, W. G.: Piezoelectricity. New York: McGraw-Hill 1946. Contains a great deal of detailed information, including equivalent circuit analyses. Thorough coverage of the whole field prior to the discovery of ferroelectricity in barium titanate.Google Scholar
  5. [5]
    Curie, P.: OEuvres de Pierre Curie. Paris: Gauthier-Villars 1908. Includes reprints pertaining to the original experiments on piezoelectricity.Google Scholar
  6. [6]
    Devonshire, A. F.: Theory of Barium Titanate. Phil. Mag. 40, 1040 (1949); 42, 1065 (1951). Phenomenological electroelastic thermodynamic expression of the properties of barium titanate through its three phase transitions (Sect. 58, 68) and a preliminary theory of cooperative displacement of elastically bound ions (Sect. 80).Google Scholar
  7. [7]
    Devonshire, A. F.: Theory of Ferroelectrics. Adv. Physics 3, 85 (1954) ( Phil. Mag. Suppl. ). A concise review of ferroelectricity and antiferroelectricity.Google Scholar
  8. [8]
    Durand, E.: Electrostatique et Magnetostatique. Paris: Masson & Cie 1953. Contains a chapter on ferroelectrics and one on the tensor theory of electrostrictive strains in liquids and solids.Google Scholar
  9. [9]
    Fry, W. J., J. M. Taylor and B. W. Henvis: Design of Crystal Vibrating Systems for Projectors and other Applications. New York: Dover 1948. Design curves and theory for various piezoelectric crystals and various backings.Google Scholar
  10. [10]
    Heising, R. A.: Quartz Crystals for Electric Circuits (their Design and Manufacture). New York: Van Nostrand 1946. A set of detailed articles by Members of the Technical Staff of Bell Telephone Laboratories.Google Scholar
  11. [11]
    A chapter on internal field calculations in crystals. See also: Non-linear Dielectric Materials. Proc. Inst. Radio Engrs., N. Y. 43, 1733 (1955).Google Scholar
  12. [12]
    Kittel, C.: Theory of Antiferroelectricity. Phys. Rev. 82, 729 (1951). Phenomenological theory of opposite polarizations on equivalent sublattices (Sect. 56).Google Scholar
  13. [13]
    Kittel, C.: Introduction to Solid State Physics. New York: Wiley 1953. An excellent text containing a chapter on ferroelectricity and antiferroelectricity.Google Scholar
  14. [14]
    Kourtschatov, I.-V.: Seignette-Electricity. Moscow 1933 (in Russian). French translation, abbreviated, “Le Champs Moléculaire dans les Dielectriques (Le Sel de Seignette) ”. Paris: Hermann 1936. Ammoniated rochelle salt (Fig. 6)Google Scholar
  15. [15]
    A detailed review with an extensive bibliography. For domain processes: J. Amer. Ceram.Sec. 39, 54 (1956).Google Scholar
  16. [16]
    Mason, W. P.: Electromechanical Transducers and Wavefilters. New York: van Nostrand 1946. Electric networks involving piezoelectrics crystals.Google Scholar
  17. [17]
    Mason, W. P.: Piezoelectric Crystals and their Applications to Ultrasonics. New York: van Nostrand 1950. Macroscopic theory and applications. Statistical theory of internal field polarization of anelastically bound ions (Sect. 78, 79). Sound waves and the properties of liquids, gases and solids.Google Scholar
  18. [18]
    Mason, W. P., and R. F. Wyck: Ferroelectrics and the Dielectric Amplifier. Proc. Inst. Radio Engrs., N. Y. 42, 1606 (1954). Review of piezoelectric, electrostrictive and ferroelectric properties of barium titanate and their applicability to transducers, accelerometers, dielectric amplification and information storage.Google Scholar
  19. [19]
    Matthias, B. T.: Phase Transitions in Ferroelectrics, in: Phase Transformations in Solids, R. SMOLUCxowsxf, J. E. Mayer and W. A. Weyl, editors. New York: Wiley 4954. A concise review, including a discussion of the discovery and significance of ferroelectricity in “perovskites” other than BaTiO3.Google Scholar
  20. [20]
    Megaw, H. D.: Acta crystallogr. 5, 739 (1952); 7, 187 (1954). The importance of directional bonding considerations in ferroelectrics and antiferroelectrics (Fig. 53).Google Scholar
  21. [21]
    Mueller, H.: The Dielectric Anomalies in Rochelle Salt. Ann. New York Acad. Sci. 40, 321 (1940). A review. Includes electrooptic and other data not mentioned here.Google Scholar
  22. [22]
    Mueller, H.: Properties of Rochelle Salt. Phys. Rev. 57, 829, 842; 58, 565, 805 (1940). Phenomenological electroelastic thermodynamic theory of the properties of rochelle salt.Google Scholar
  23. [23]
    Sachse, H.: Ferroelectrica, in: Technische Physik in Einzeldarstellungen, vol. 11. Berlin: Springer 1956. The properties, theories and technical applications, with extensive patent literature.Google Scholar
  24. [24]
    Scheibe, A.: Piezoelektrizität des Quarzes. Dresden and Leipzig: Steinkopff 1935. Properties and applications.Google Scholar
  25. [25]
    Shirane, G., F. Jona and R. Pepixsky: Proc. Inst. Radio Ingrs., N. Y. 43, 1738 (1955): Some Aspects of Ferroelectricity. A detailed discussion of recent work on ferroelectricity and antiferroelectricity with particular emphasis on crystal structure considerations.Google Scholar
  26. [26]
    Slater, J. C.: Theory of Transition in KH2PO4. J. Chem. Phys. 9, 16 (1941). The first theory of ferroelectricity based entirely on short range coupling (Sect. 75), and applied by NAGAMIYA to antiferroelectricity in NH4H2PO4 (Sect. 7, 56 ).Google Scholar
  27. [27]
    Slater, J. C.: Lorentz Correction in BaTiO3. Phys. Rev. 78, 748 (1950). Introduces the matrix LORENTZ factor, applying it to a Devonshire type Ti ionic polarizability, but also including the strong oxygen polarizability.Google Scholar
  28. [28]
    Tisza, L.: On the General Theory of Phase Transitions, in: Phase Transformations in Solids, R. SMoLucxowsxl, J. E. Mayer and W. A. Weyl, editors. New York: Wiley 1951. Critical points in liquids and second order transitions in solids in terms on the generalized stiffness matrix (Sect. 63 ).Google Scholar
  29. [29]
    Voigt, W.: Lehrbuch der Kristallphysik. Leipzig: Teubner 1910, 1928. A classic treatise, containing the first complete systematization of crystal thermodynamics, the tensor being introduced for the purpose.Google Scholar
  30. [30]
    Hippel, A. R. v.: Ferroelectricity, Domain Structures and Phase Transitions in BaTiO3. Rev. Mod. Phys. 22, 221 (1950). Review of the discovery and delineation of the principal ferroelectric properties of barium titanate.Google Scholar
  31. [31]
    Hippel, A. R. v.: Dielectrics and Waves. New York: Wiley 1954, and Dielectric Materials and Applications; papers by 22 contributors. Cambridge: Technology Press, and New York: Wiley 1954. An excellent handbook.Google Scholar
  32. [32]
    Winkler, H. G. F.: Struktur and Eigenschaften der Kristalle. Berlin: Springer 1955. Structure drawings of quartz, perovskites, ilmenites, etc. Solid solutions and phase transformations. Hydrogen bonding and covalent bonding in crystals.CrossRefGoogle Scholar
  33. [33]
    Wooster, W. A.: Crystal Physics. Cambridge: University Press 1938. Chapters on tensors, piezoelectricity, pyroelectricity and elasticity.Google Scholar
  34. [34]
    Zwikeer, C.: Physical Properties of Solid Materials. New York: Interscience 1954. Generalized compliances and rigidities (Sect. 63) and sections on piezoelectricity, pyroelectricity and ferroelectricity.Google Scholar

Copyright information

© Springer-Verlag OHG. Berlin · Göttingen · Heidelberg 1956

Authors and Affiliations

  • P. W. ForsberghJr.

There are no affiliations available

Personalised recommendations