Generalized Differentiability / Duality and Optimization for Problems Dealing with Differences of Convex Functions

  • J.-B. Hiriart-Urruty
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 256)


A function is called d. c. if it can be. expressed as a difference of two convex functions. In the present paper we survey the main known results about suuch functions from the viewpoint of Analysis and Optimization.


Convex Function Lipschitz Function Support Function Bounded Variation Tangent Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A.D. Alexandroff, Almost everyuhene existence of the second dlfferential of a convex function and some properties of convex surfaces connected with it, Ucenye Zapiski Leningr. Gos. Univ. Ser. Mat. 37 n° 6, (1939) 3–35 (in Russian)Google Scholar
  2. [2]
    A.D. Alexandroff, On surfaces represented as the. difference of convex functions, Izv. Akad. Nauk Kaz. SSR 60, Ser. Mat. Mekh. 3, (1949) 3–20 (in Russian).Google Scholar
  3. [3]
    A.D. Alexandroff, Surfaces reprented by the diffexences of convex functions, Dokl. Akad. Nauk SSSR 72, (1959) 613–616 (in Russian).Google Scholar
  4. [4]
    G. Arsove, Functions representable. as the difference of subharmonic func-tions, Transactions Amer. Math. Soc. 75, (1953) 327–365.CrossRefGoogle Scholar
  5. [5]
    J.-P. Aubin, Lipschitz behavior of solutions to convex minimization problems, Math. of Operations Research 9, n° 1 (1984) 87–111.CrossRefGoogle Scholar
  6. [6]
    G. Auchmuty, Duality for. nonconvex variational principles, J. of Differential Equations 50 (1983), 80–145.CrossRefGoogle Scholar
  7. [7]
    M. Bougeard, Cotribution à la théorie. de. More. en dimension finie, Thèse de 3ème cycle de l’Université de Paris IX, 1978.Google Scholar
  8. [8]
    L.N. Brysgalova, Singularities of max of functions depending on parameters, Funct. Anal. Appl. 11, 1 (1977), 59–60.Google Scholar
  9. [9]
    L.N. Brysgalova, On max function of families depending on parameters, Funct. Anal. Appl. 12, 1 (1978), 66–67.Google Scholar
  10. [10]
    H. Busemann, Convex surfaces, Interscience Tracts in Pure and Applied Mathematics, 1958.Google Scholar
  11. [11]
    F.H. Clarke, Nonsmooth analysis and optimization, J. Wiley Interscience, 1983.Google Scholar
  12. [12]
    V.F. Demyanov and L.N. Polyakova, Conditions for minimum of a quasi-diferentiable function on a quasi-differentiable set, U.S.S.R. Comput. Math. Phys. 20, (1981) 34–43.CrossRefGoogle Scholar
  13. [13]
    V.F. Demyanov and A.M. Rubinov, On quasi-differentiable mappings, Math. Operationsforsch, u. Stat. ser. Optimization 14, (1983) 3–21.CrossRefGoogle Scholar
  14. [14]
    R.M. Dudley, On second derivaties of convex functions, Math. Scand. 41 (1977) 159–174 & 46 (1980) 61.Google Scholar
  15. [15]
    I. Ekeland, Legendre duality in nonconvex optimization and calculas of variations, Siam J. Control Optimization 15 (1977), 905–934.CrossRefGoogle Scholar
  16. [16]
    I. Ekeland, Nonconvex duality, Bull. Soc. Math. France, Mémoire 60 (1979), 45–55.Google Scholar
  17. [17]
    I. Ekeland and J.-M. Lasry, Problèmes variationnels non convexes en dualité, C.R. Acad. Sc. Paris, t. 291 (1980), 493–496.Google Scholar
  18. ][18]
    R. Ellaia, Contribution à l’analyse et l’optimisation de difféerences da fonctions convexes, Thèse de 3ème cycle de l’Université Paul Sabatier, 1984.Google Scholar
  19. [19]
    R. Ellaia and J.-B. Hiriart-Urruty, The conjugate, of the. difference of convex functions, to appear in J. of Optim. Theory and Applications.Google Scholar
  20. [20]
    D. Gabay, Minimizing the difference of two convex function: Part I: Algorithms based on exact regularization, Working paper, I.N.R.I.A. (1982).Google Scholar
  21. [21]
    P. Hartman, On functions representable as a difference of convex functions, Pacific J. Math. 9, (1959) 707–713.Google Scholar
  22. [22]
    B. Heron and M. Sermange, Non-convex methods for computing free boundary equilibria of axially symmetric plasmas, Appl. Math. Optimization 8 (1982), 351–382.CrossRefGoogle Scholar
  23. [23]
    J.-B. Hiriart-Urruty, The approximate first-order directional derivatives for a convex function in “Mathematical Theories of Optimization” Lecture notes in Mathematics 979, (1983) 144–177.CrossRefGoogle Scholar
  24. [24]
    J.-B. Hiriart-Urruty, A general formula on the conjugate, of the dlfference of function, Séminaire d’Analyse Numérique, Université Paul Sabatier (1984).Google Scholar
  25. [25]
    J.-B. Hiriart-Urruty, Miscellanies on the. analysis and optimization of nonsmooth functions, to appear.Google Scholar
  26. [26]
    R. Janin, Sur la dualité et la sensibilité dans les problémes dz program-motion mathématique, Thèse Université Paris IX (1974).Google Scholar
  27. [27]
    R. Janin, Sur du multiapplications qui sont des gradients généralisés, Note aux C.R.A.S. Paris 294, (1982) 115–117.Google Scholar
  28. [28]
    E.M. Landis, On functions represetable, as the dfference of two convex functions, Dokl. Akad. Nauk SSSR 80, 1 (1951), 9–11.Google Scholar
  29. [29]
    C. Malivert, Méthodes de duscente sur un fermé non convexe, Bull. de la Soc. Math. de France, Mémoire n° 60, (1979) 113–124.Google Scholar
  30. [30]
    J.N. Mather, Distance from a manifold in Euclidean space, Proc. of Symp. in Pure Math., Vol. 40, Part 2 (1983), 199–216.Google Scholar
  31. [31]
    V.I. Matov, Topological classification of the germms of max and minimax of the familes in general position, Russian Math. Surv. 37, 4 (1982), 167–168.CrossRefGoogle Scholar
  32. [32]
    V.I. Matov, Singularities of max functions on the manifold with boundary, Trudy Sem. I.G. Petrovskogo, Mosk. Gos. Univ. 6 (1981), 195–222.Google Scholar
  33. [33]
    D. Melzer, Expressibility of pieceewise linear continuous functions as a differrnce of two piecewise linear convex functions, preprint Humboldt Universität Berlin (1984).Google Scholar
  34. [34]
    F. Mignot, Contrôle dans les inéquations variationnelles elliptiques, J. of Funct. Analysis 22, (1976) 130–185.CrossRefGoogle Scholar
  35. [35]
    J. Noailles, Une méthoda d’optimisation globale, en programmation non convexe, Colloque National d’Analyse Numérique de Gouvieux, 1980.Google Scholar
  36. [36]
    J.-P. Penot, Calcul souds-différentiel et optimisation, J. of Funct. Analysis 27, (1978) 248–276.CrossRefGoogle Scholar
  37. [37]
    A. Pommellet, Analyse convexe et théoie de Morse, Thèse de 3ème cycle de l’Université de Paris IX, 1982.Google Scholar
  38. [38]
    B.N. Pshenichnyi, in Contrôle optimal et Jeux différentiels, Cahiers de l’I.R.I.A. n° 4 (1971).Google Scholar
  39. [39]
    B.N. Pshenichnyi, Necessary conditions for an extremum, Marcel Dekker N.Y., 1971.Google Scholar
  40. [40]
    A.W. Roberts and D.E. Varberg, Convex functions, Academic Press, 1973.Google Scholar
  41. [41]
    R.T. Rockafellar, Convex analysis, Princeton University Press, 1970.Google Scholar
  42. [42]
    R.T. Rockafellar, Favorable classes of Lipschitz continuous iunctions in subgnadient optimization, in “Progress in nondifferentiable optimization”, E. Nurminskii, ed., Pergamon Press (1981).Google Scholar
  43. [43]
    R.T. Rockafellar, Maximal monotone relations and the second derivatives of nonsmooth functions, preprint 1984.Google Scholar
  44. [44]
    A. Shapiro and Y. Yomdin, On functions representable as a difference of two convex functions and necessary conditions in a constrained optimization, preprint Ben-Gurion University of the Negev (1982).Google Scholar
  45. [45]
    A. Shapiro, On functions representable as a difference of a two convex function in inequality constrained optimization, Research report University of South Africa (1983).Google Scholar
  46. [46]
    A. Shapiro, On optimality conditions in quasidifferentiable. optimization, Siam J. Control and Optimization 22, 4 (1984) 610–617.CrossRefGoogle Scholar
  47. [47]
    R. Schneider, Boundary structure and curvatuer of convex bodies in “Contributions to Geometry”, J. Tölke and J.M. Wills ed., Birkhäuser Verlag, 1979.Google Scholar
  48. [48]
    J. Spingarn, Submonotone subdfferentiables of Lipschitz functions, Trans. Amer. Math. Soc. 264, (1981) 77–89.CrossRefGoogle Scholar
  49. [49]
    J.F. Toland, Duality in nonconvex optimization, J. Math. Analysis and Applications 66 (1978), 399–415.CrossRefGoogle Scholar
  50. [50]
    J.F. Toland, A duality principle for nonconvex optimization and the calculus of variations, Arch. Rational Mech. Anal. 71 (1979), 41–61.CrossRefGoogle Scholar
  51. [51]
    J.F. Toland, On subdifferential calculus and duality in nonconvex optimization, Bull. Soc. Math. France, Mémoire 60 (1979), 177–183.Google Scholar
  52. [52]
    H. Tuy, Global minimization of a differnce. of two convex functions, to appear.Google Scholar
  53. [53]
    J.-P. Vial, Strong and weak convexity of sets and functions, Math. of Operations Research 8, 2 (1983), 231–259.CrossRefGoogle Scholar
  54. [54]
    Y. Yomdin, On functions repersentable as a supremmum of a family of smooth functions, Siam J. Math. Analysis 14, 2 (1983), 239–246.CrossRefGoogle Scholar
  55. [55]
    Y. Yomdin, On functions representable as a supremum of a family of smooth functions, II, to appear.Google Scholar
  56. [56]
    Y. Yomdin, Maxima of smooth families III: Morse-Sard theorem, preprint 1984.Google Scholar
  57. [57]
    Y. Yomdin, On repesentability of convex function as maxima of linear families, preprint 1984.Google Scholar
  58. [58]
    V.A. Zalgaller, On the, representitation of a function of two variables as the difference of convex function, Vestn. Leningrad Univ. Ser. Mat. Mekh. 18, (1963) 44–45 (in Russian).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • J.-B. Hiriart-Urruty

There are no affiliations available

Personalised recommendations