Social Adaptation at Runtime

  • Raian Ali
  • Carlos Solis
  • Inah Omoronyia
  • Mazeiar Salehie
  • Bashar Nuseibeh
Part of the Communications in Computer and Information Science book series (CCIS, volume 410)


One of the main goals of software adaptation is that users get their dynamic requirements met efficiently and correctly. Adaptation is traditionally driven by changes in the system internally and its operational environment. An adaptive system has to monitor and analyse such changes and, if needed, switch to the right behaviour to meet its requirements. In this paper, we advocate another essential driver for adaptation which is the collective judgement of users on the different behaviours of a system. This judgement is based on the feedback iteratively collected from users at run-time. Users feedback should be related to their main interest which is the ability and quality of the system in reaching their requirements. We propose a novel approach to requirements-driven adaptation that gives the collective judgement of users, inferred from their individual feedback, a primary role in planning and guiding adaptation. We apply our approach on a case study and report on the results.


Requirements-driven Adaptation Requirements at Runtime Social Adaptation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Laddaga, R.: Self-adaptive software. Technical Report 98-12, DARPA BAA (1997)Google Scholar
  2. 2.
    Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research challenges. ACM Transactions on Autonomous and Adaptive Systems 4, 14:1–14:42 (2009)Google Scholar
  3. 3.
    Murch, R.: Autonomic computing. IBM Press (2004)Google Scholar
  4. 4.
    Ali, R., Solis, C., Salehie, M., Omoronyia, I., Nuseibeh, B., Maalej, W.: Social sensing: when users become monitors. In: Proceedings of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering, ESEC/FSE 2011, pp. 476–479. ACM (2011)Google Scholar
  5. 5.
    Dumas, J.S., Redish, J.C.: A Practical Guide to Usability Testing, 1st edn. Intellect Books, Exeter (1999)Google Scholar
  6. 6.
    Vredenberg, K., Isensee, S., Righi, C.: User-Centered Design: An Integrated Approach. Prentice Hall PTR (2001)Google Scholar
  7. 7.
    Maalej, W., Happel, H.J., Rashid, A.: When users become collaborators: towards continuous and context-aware user input. In: Proceeding of the 24th ACM SIGPLAN Conference Companion on Object Oriented Programming Systems Languages and Applications, OOPSLA 2009, pp. 981–990. ACM (2009)Google Scholar
  8. 8.
    Sawyer, P., Bencomo, N., Whittle, J., Letier, E., Finkelstein, A.: Requirements-aware systems: A research agenda for re for self-adaptive systems. In: Proceedings of the 2010 18th IEEE International Requirements Engineering Conference, RE 2010, pp. 95–103 (2010)Google Scholar
  9. 9.
    Hui, B., Liaskos, S., Mylopoulos, J.: Requirements analysis for customizable software goals-skills-preferences framework. In: Proceedings of the 11th IEEE International Conference on Requirements Engineering, pp. 117–126 (2003)Google Scholar
  10. 10.
    Ali, R., Solis, C., Omoronyia, I., Salehie, M., Nuseibeh, B.: Social adaptation: When software gives users a voice. Technical Report Lero-TR-2011-05, Lero. University of Limerick. Ireland (2011)Google Scholar
  11. 11.
    Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-oriented software development methodology. Autonomous Agents and Multi-Agent Systems 8(3), 203–236 (2004)CrossRefGoogle Scholar
  12. 12.
    Cheng, B.H.C., Giese, H., Inverardi, P., Magee, J., de Lemos, R.: Software engineering for self-adaptive systems: A research road map. In: Software Engineering for Self-Adaptive Systems, pp. 1–26 (2008)Google Scholar
  13. 13.
    Fickas, S., Feather, M.S.: Requirements monitoring in dynamic environments. In: Proceedings of the Second IEEE International Symposium on Requirements Engineering, RE 1995 (1995)Google Scholar
  14. 14.
    Silva Souza, V.E., Lapouchnian, A., Robinson, W.N., Mylopoulos, J.: Awareness requirements for adaptive systems. In: Proceeding of the 6th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2011, pp. 60–69. ACM (2011)Google Scholar
  15. 15.
    Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy goals for requirements-driven adaptation. In: Proceedings of the 2010 18th IEEE International Requirements Engineering Conference, RE 2010, pp. 125–134 (2010)Google Scholar
  16. 16.
    Qureshi, N.A., Perini, A.: Requirements engineering for adaptive service based applications. In: Proceedings of the 2010 18th IEEE International Requirements Engineering Conference, RE 2010, pp. 108–111 (2010)Google Scholar
  17. 17.
    Bencomo, N., Whittle, J., Sawyer, P., Finkelstein, A., Letier, E.: Requirements reflection: requirements as runtime entities. In: Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering, ICSE 2010, pp. 199–202. ACM, New York (2010)Google Scholar
  18. 18.
    Rahlff, O.W., Kenneth Rolfsen, R., Herstad, J.: Using personal traces in context space: Towards context trace technology. Personal Ubiquitous Comput 5, 50–53 (2001)CrossRefGoogle Scholar
  19. 19.
    Weld, D.S., Anderson, C., Domingos, P., Etzioni, O., Gajos, K., Lau, T., Wolf, S.: Automatically personalizing user interfaces. In: International Joint Conference on Artificial Intelligence, pp. 1613–1619 (2003)Google Scholar
  20. 20.
    Schiaffino, S., Amandi, A.: User - interface agent interaction: personalization issues. Int. J. Hum.-Comput. Stud. 60, 129–148 (2004)CrossRefGoogle Scholar
  21. 21.
    Teevan, J., Dumais, S.T., Horvitz, E.: Personalizing search via automated analysis of interests and activities. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2005, pp. 449–456. ACM, New York (2005)Google Scholar
  22. 22.
    Chirita, P.A., Nejdl, W., Paiu, R., Kohlschütter, C.: Using odp metadata to personalize search. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2005, pp. 178–185. ACM, New York (2005)Google Scholar
  23. 23.
    Ali, R., Chitchyan, R., Giorgini, P.: Context for goal-level product line derivation. In: The 3rd International Workshop on Dynamic Software Product Lines, DSPL 2009 (2009)Google Scholar
  24. 24.
    Ali, R., Dalpiaz, F., Giorgini, P.: A goal-based framework for contextual requirements modeling and analysis. Requir. Eng. 15, 439–458 (2010)CrossRefGoogle Scholar
  25. 25.
    Seyff, N., Graf, F., Maiden, N.A.M., Grünbacher, P.: Scenarios in the wild: Experiences with a contextual requirements discovery method. In: Glinz, M., Heymans, P. (eds.) REFSQ 2009 Amsterdam. LNCS, vol. 5512, pp. 147–161. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Ali, R., Solis, C., Dalpiaz, F., Maalej, W., Giorgini, P., Nuseibeh, B.: Social software product lines. In: The 1st International Workshop on Requirements Engineering for Social Computing (RESC 2011), pp. 14–17. IEEE (2011)Google Scholar
  27. 27.
    Surowiecki, J.: The Wisdom of Crowds. Anchor (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Raian Ali
    • 1
  • Carlos Solis
    • 2
  • Inah Omoronyia
    • 3
  • Mazeiar Salehie
    • 4
  • Bashar Nuseibeh
    • 4
    • 5
  1. 1.Bournemouth UniversityU.K.
  2. 2.AmazonUSA
  3. 3.University of GlasgowU.K.
  4. 4.Lero - University of LimerickIreland
  5. 5.Open UniversityU.K.

Personalised recommendations