A Calculus of Computational Fields

  • Mirko Viroli
  • Ferruccio Damiani
  • Jacob Beal
Part of the Communications in Computer and Information Science book series (CCIS, volume 393)


A number of recent works have investigated the notion of “computational fields” as a means of coordinating systems in distributed, dense and mobile environments such as pervasive computing, sensor networks, and robot swarms. We introduce a minimal core calculus meant to capture the key ingredients of languages that make use of computational fields: functional composition of fields, functions over fields, evolution of fields over time, construction of fields of values from neighbours, and restriction of a field computation to a sub-region of the network. This calculus can act as a core for actual implementation of coordination languages and models, as well as pave the way towards formal analysis of properties concerning expressiveness, self-stabilisation, topology independence, and relationships with the continuous space-time semantics of spatial computations.


Sensor Network Evaluation Tree Operational Semantic Pervasive Computing Tree Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beal, J.: A basis set of operators for space-time computations. In: Spatial Computing Workshop (2010),
  2. 2.
    Beal, J.: Engineered self-organization approaches to adaptive design. In: Roy, R., Shehab, E., Hockley, C., Khan, S. (eds.) 1st International Conference on Through-life Engineering Services, pp. 35–42. Cranfield University Press (November 2012)Google Scholar
  3. 3.
    Beal, J., Bachrach, J.: Infrastructure for engineered emergence in sensor/actuator networks. IEEE Intelligent Systems 21, 10–19 (2006)Google Scholar
  4. 4.
    Beal, J., Bachrach, J., Vickery, D., Tobenkin, M.: Fast self-healing gradients. In: Proceedings of ACM SAC 2008, pp. 1969–1975. ACM (2008)Google Scholar
  5. 5.
    Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate: Languages for spatial computing. In: Mernik, M. (ed.) Formal and Practical Aspects of Domain-Specific Languages: Recent Developments, ch. 16, pp. 436–501. IGI Global (2013), A longer version available at:
  6. 6.
    Beal, J., Usbeck, K., Benyo, B.: On the evaluation of space-time functions. The Computer Journal (2012), Online first, available through doi:10.1093/comjnl/bxs099Google Scholar
  7. 7.
    Butera, W.: Programming a Paintable Computer. PhD thesis, MIT, Cambridge, MA, USA (2002)Google Scholar
  8. 8.
    Cardelli, L., Gardner, P.: Processes in space. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 78–87. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Cardelli, L., Gordon, A.D.: Mobile ambients. Theoretical Computer Science 240(1), 177–213 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: A minimal core calculus for Java and GJ. ACM Transactions on Programming Languages and Systems 23(3) (2001)Google Scholar
  11. 11.
    Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applications: The tota approach. ACM Trans. on Software Engineering Methodologies 18(4), 1–56 (2009)CrossRefGoogle Scholar
  12. 12.
    MIT Proto, (retrieved January 1, 2012)
  13. 13.
    Montagna, S., Viroli, M., Fernandez-Marquez, J.L., Di Marzo Serugendo, G., Zambonelli, F.: Injecting self-organisation into pervasive service ecosystems. Mobile Networks and Applications 18(3), 398–412 (2013)CrossRefGoogle Scholar
  14. 14.
    Paun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Viroli, M., Beal, J., Casadei, M.: Core operational semantics of Proto. In: Proceedings of ACM SAC 2011, pp. 1325–1332. ACM (March 2011)Google Scholar
  16. 16.
    Viroli, M., Beal, J., Usbeck, K.: Operational semantics of proto. Science of Computer Programming 78(6), 633–656 (2013)CrossRefGoogle Scholar
  17. 17.
    Viroli, M., Casadei, M., Montagna, S., Zambonelli, F.: Spatial coordination of pervasive services through chemical-inspired tuple spaces. ACM Transactions on Autonomous and Adaptive Systems 14, 14:1–14:24 (2011)Google Scholar
  18. 18.
    Viroli, M., Casadei, M., Omicini, A.: A framework for modelling and implementing self-organising coordination. In: Proceedings of ACM SAC 2009, vol. III, pp. 1353–1360, March 8-12. ACM (2009)Google Scholar
  19. 19.
    Viroli, M., Pianini, D., Beal, J.: Linda in space-time: an adaptive coordination model for mobile ad-hoc environments. In: Sirjani, M. (ed.) COORDINATION 2012. LNCS, vol. 7274, pp. 212–229. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Whitehouse, K., Sharp, C., Brewer, E., Culler, D.: Hood: a neighborhood abstraction for sensor networks. In: Proceedings of the 2nd International Conference on Mobile Systems, Applications, and Services. ACM Press (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mirko Viroli
    • 1
  • Ferruccio Damiani
    • 2
  • Jacob Beal
    • 3
  1. 1.University of BolognaItaly
  2. 2.University of TorinoItaly
  3. 3.Raytheon BBN TechnologiesUSA

Personalised recommendations