Transactions on Computational Science XXI pp 211-229

Part of the Lecture Notes in Computer Science book series (LNCS, volume 8160) | Cite as

Vertical Transfer Algorithm for the School Bus Routing Problem

  • Ocotlán Díaz-Parra
  • Jorge A. Ruiz-Vanoye
  • Ma. de los Ángeles Buenabad-Arias
  • Ana Canepa Saenz

Abstract

In this paper is a solution to the School Bus Routing Problem by the application of a bio-inspired algorithm in the vertical transfer of genetic material to offspring or the inheritance of genes by subsequent generations. The vertical transfer algorithm or Genetic algorithm uses the clusterization population pre-selection operator, tournament selection, crossover-k operator and an intelligent mutation operator called mutation-S. The use of the bio-inspired algorithm to solve SBRP instances show good results about Total Bus Travel Distance and the Number of Buses with the Routes.

Keywords

Transportation Combinatorial Optimization Algorithms School Bus Routing Problem SBRP bio-inspired algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angel, R.D., Caudle, W.L., Noonan, R., Whinston, A.: Computer-Assisted School Bus Scheduling. Management Science B 18, 279–288 (1972)Google Scholar
  2. 2.
    Bektaş, T., Elmastaş, S.: Solving school bus routing problems through integer programming. Journal of the Operational Research Society 58(12), 1599–1604 (2007)CrossRefMATHGoogle Scholar
  3. 3.
    Bennet, B., Gazis, D.: School Bus Routing by computer. Transportation Research 6, 317–326 (1972)CrossRefGoogle Scholar
  4. 4.
    Bodin, L.D., Berman, L.: Routing and scheduling of school buses by computer. Transportation Science 13(2), 113–129 (1979)CrossRefGoogle Scholar
  5. 5.
    Bookbinder, H.J., Edwards, H.S.: School-bus routing for program scheduling. Computers and Operations Research 17(1), 79–94 (1990)CrossRefMATHGoogle Scholar
  6. 6.
    Braca, J., Bramel, J., Posner, B., Simchi-Levi, D.: Computerized approach to the New York City school bus routing problem. IIE Transactions 29(8), 693–702 (1997)Google Scholar
  7. 7.
    Bowerman, R., Hall, B., Calamai, P.: A multi-objective optimization approach to urban school bus routing: Formulation and solution method. Transportation Research Part A 29(2), 107–123 (1995)Google Scholar
  8. 8.
    Chen, D.-S., Kallsen, H.A., Snider, R.C.: School bus routing and scheduling: An expert system approach. Computers and Industrial Engineering 15(1-4), 179–183 (1988)CrossRefGoogle Scholar
  9. 9.
    Chen, D.-S., Kallsen, H.A., Chen, H.-C., Tseng, V.-C.: A bus routing system for rural school districts. Computers and Industrial Engineering 19(1-4), 322–325 (1990)CrossRefGoogle Scholar
  10. 10.
    Clarke, G., Wright, J.W.: Scheduling of Vehicles from a Central Depot to a number of delivery points. Operations Research 12, 568–581 (1964)CrossRefGoogle Scholar
  11. 11.
    Chou, Y.-H.: Automatic bus routing and passenger geocoding with a geographic information system. In: Proceedings of the 6th Conference of Vehicle Navigation and Information Systems (VNIS), pp. 352–359 (1995)Google Scholar
  12. 12.
    Corberán, A., Fernández, E., Laguna, M., Martí, R.: Heuristic solutions to the problem of routing school buses with multiple objectives. Journal of the Operational Research Society 53(4), 427–435 (2002)CrossRefMATHGoogle Scholar
  13. 13.
    Wetzel, A.: Evaluation of the effectiveness of genetic algorithms in combinational optimization. University of Pittsburgh, Pittsburgh (1983) (unpublished)Google Scholar
  14. 14.
    Desrosiers, J., Ferland, J., Rousseau, J.-M., Lapalme, G., Chapleau, L.: An overview of a school busing system. In: International Conference on Transportation, Scientific Management of Transport Systems, New Delhi, vol. IX, pp. 235–243 (1981)Google Scholar
  15. 15.
    Desrosiers, J., Ferland, J.A., Rousseau, J.-M., Lapalme, G., Chapleau, L.: TRANSCOL: A multi-period school bus routing and scheduling systems. Management Sciences 22, 47–71 (1986)Google Scholar
  16. 16.
    Díaz-Parra, O., Cruz-Chávez, M.A.: Evolutionary Algorithm with Intelligent Mutation Operator that solves the Vehicle Routing Problem of Clustered Classification with Time Windows. Polish Journal of Environmental Studies 17(4C), 91–95 (2008)Google Scholar
  17. 17.
    Díaz-Parra, O., Ruiz-Vanoye, J.A., Zavala-Díaz, J.C.: Population pre-selection operators used for generating a non-random initial population to solve vehicle routing problem with time windows. Scientific Research and Essays 5(22), 3529–3537 (2010)Google Scholar
  18. 18.
    Díaz-Parra, O., Ruiz-Vanoye, J.A., Zavala-Díaz, J.C.: School Bus Routing Problem Library-SBRPLIB. International Journal of Combinatorial Optimization Problems and Informatics 2(1), 23–26 (2011)Google Scholar
  19. 19.
    Dulac, G., Ferland, J.A., Forgues, P.A.: School bus routes generator in urban surroundings. Computers and Operations Research 7(3), 199–213 (1980)CrossRefGoogle Scholar
  20. 20.
    Gavish, B., Shlifer, E.: An approach for solving a class of transportation scheduling problems. European Journal of Operational Research 3(2), 122–134 (1979)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Graham, D.S.: A GIS for bus routing saves money, worry in North Carolina. Geo. Info. Systems 3(5), 39–43 (1993)Google Scholar
  22. 22.
    Guo, Q., Li, L., Guo, Y.: Routing optimization for school bus problem. Journal of Southwest Jiaotong University 41(4), 486–490 (2006)Google Scholar
  23. 23.
    Hargroves, B.T., Demetsky, M.J.: A computer assisted school bus routing strategy: A case study. Socio-Economic Planning Sciences 15(6), 341–345 (1981)CrossRefGoogle Scholar
  24. 24.
    Iskander, W., Jaraiedi, M., Emami, F.: A practical approach for school bus routing and scheduling. In: IIE Annual Conference and Exposition, Orlando, FL (2006)Google Scholar
  25. 25.
    Li, L., Fu, Z.: The school bus routing problem: A case study. Journal of the Operational Research Society 53(5), 552–558 (2002)CrossRefMATHGoogle Scholar
  26. 26.
    Lindenberg, W.: EDP Program System for Minimizing the Costs of School Bus Traffic. Angewandte Informatik, Applied Informatics 25(4), 158–165 (1983)Google Scholar
  27. 27.
    MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Symposium on Math, Statistics, and Probability, Berkeley, CA, vol. 1, pp. 281–297. University of California Press (1967)Google Scholar
  28. 28.
    Newton, R.M., Thomas, W.H.: Design of school Bus Routes by computer. Socio-Economic Planning Science 3(1), 75–85 (1969)CrossRefGoogle Scholar
  29. 29.
    Newton, R.M., Thomas, W.H.: Bus routing in a multi-school system. Computers & Operations Research 1(2), 213–222 (1974)CrossRefGoogle Scholar
  30. 30.
    Pacheco Bonrostro, J.A., Aragón, A., Delgado Quiralte, C.: Design of algorithms for the problem of the school transport. Application in the Burgos province. Questiió: Quaderns d’Estadística, Sistemes, Informatica i Investigació Operativa 24(1), 55–82 (2000)Google Scholar
  31. 31.
    Park, J., Kim, B.-I.: The school bus routing problem: A review. European Journal of Operational Research 202(2), 311–319 (2010)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Pickens, P.R., Tyler, J.M.: Transportation planning for urban school systems. ASCE Transp. Eng. J. 100(TE2), 461–473 (1974)Google Scholar
  33. 33.
    Rhoulac, T.D., Rouphail, N., Tsai, J.C.: Using global positioning system to improve school bus routing and scheduling. Transportation Research Record 1768, 242–249 (2001)CrossRefGoogle Scholar
  34. 34.
    Ripplinger, D.: Rural school vehicle routing problem. Transportation Research Record 1922, 105–110 (2005)CrossRefGoogle Scholar
  35. 35.
    Ruiz-Vanoye, J.A., Díaz-Parra, O.: Similarities between Meta-heuristics Algorithms and the Science of Life. Central European Journal of Operations Research 19(4), 445–466 (2010)CrossRefGoogle Scholar
  36. 36.
    Schittekat, P., Sevaux, M., Sörense, K., Springael, J.: A metaheuristic for the School Bus Routing Problem. In: 22nd European Conference on Operational Research EURO XXII (2007)Google Scholar
  37. 37.
    Schittekat, P., Sevaux, M., Sörensen, K.: A mathematical formulation for a school bus routing problem. In: Proceedings of the International Conference on Service Systems and Service Management (ICSSSM), vol. 2, pp. 1552–1557 (2007b)Google Scholar
  38. 38.
    Spada, M., Bierlaire, M., Leibling, T.: Decision-aid methodology for the school bus routing and scheduling problem. In: Proceedings of the 3rd Swiss Transport Research Conference, Monte Verita-Ascona, pp. 19–21 (2003)Google Scholar
  39. 39.
    Swersey, A.J., Ballard, W.: Scheduling School Buses. Management Science 30(7), 844–853 (1984)CrossRefMATHGoogle Scholar
  40. 40.
    Thangiah, S.R., Nygard, K.E.: School bus routing using genetic algorithms. In: Proceedings of SPIE - the International Society for Optical Engineering, vol. 1707, pp. 387–398 (1992)Google Scholar
  41. 41.
    Thangiah, S.R., Fergany, A., Wilson, B., Pitluga, A., Mennell, W.: School bus routing in rural school districts. Lecture Notes in Economics and Mathematical Systems 600, 209–232 (2008)CrossRefGoogle Scholar
  42. 42.
    Díaz-Parra, O., Ruiz-Vanoye, J.A., Buenabad-Arias, Á., Cocón, F.: A Vertical Transfer Algorithm for School Bus Routing Problem. In: Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC 2012), Mexico City, November 5-9, pp. 66–71 (2012)Google Scholar
  43. 43.
    Ruiz-Vanoye, J.A., Díaz-Parra, O.: Similarities between Meta-heuristics Algorithms and the Science of Life. Central European Journal of Operations Research 19(4), 445–466 (2011)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Lederberg, J., Tatum, E.L.: Novel genotypes in mixed cultures of biochemical mutants of bacteria. Cold Spring Harbor Symposia of Quantitative Biology 11 (1946)Google Scholar
  45. 45.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  46. 46.
    Kim, J.H., Soh, S.: Designing hub-and-spoke school bus transportation network: a case study of wonkwang university. Promet-Traffic & Transportation 24(5), 389–394 (2012)Google Scholar
  47. 47.
    Park, J., Tae, H., Kim, B.I.: A post-improvement procedure for the mixed load school bus routing problem. European Journal of Operational Research 217(1), 204–213 (2012)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ocotlán Díaz-Parra
    • 1
  • Jorge A. Ruiz-Vanoye
    • 1
  • Ma. de los Ángeles Buenabad-Arias
    • 1
  • Ana Canepa Saenz
    • 1
  1. 1.Departamento de Ciencias De la InformaciónUniversidad Autónoma del CarmenCiudad del CarmenMéxico

Personalised recommendations