Driving Robots Using Emotions

  • Shashi Shekhar Jha
  • Shrinivasa Naika C.L.
  • Shivashankar B. Nair
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8160)


Researchers have tried to embed synthetic emotions into robot much like their biological counterparts. While many have shown the effect of emotion on decision-making for the robot, the scenarios that portray when to use emotions for robots are rare. In this paper, we evaluate the performance of a robot by empowering it with a decision-making capability which uses synthetic emotions. Since from the robot’s perspective the environment is stochastic, it needs to make the right decision for survival. A Comfort level is defined as a metric which determines the quality of life of the robot. The robot possesses various needs and urges all of which influence its decisions. The main objective was to make the robot perform high profile tasks rather than menial ones so as to increase its utility. Results obtained from experiments conducted using a real situated robot with and without emotion indicate that emotion aids more significantly when the environment has abundant resources.


Artificial Life Synthetic emotions Behavior selection Robotics Software agents Softbots Decision-making 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harl, K.M., Chang, L.J., van’t Wout, M., Sanfey, A.G.: The neural mechanisms of affect infusion in social economic decision-making: A mediating role of the anterior insula. NeuroImage 61(1), 32–40 (2012)CrossRefGoogle Scholar
  2. 2.
    Hudlicka, E.: Modeling the mechanisms of emotion effects on cognition. In: Proceedings of the 2008 AAAI Fall Symposium. The AAAI Press, Menlo Park (2008)Google Scholar
  3. 3.
    Fong, T., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive robots. Robotics and Autonomous Systems 42(3-4), 143–166 (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Antos, D., Pfeffer, A.: Using emotions to enhance decision-making. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, vol. 1, pp. 24–30. AAAI Press (2011)Google Scholar
  5. 5.
    Parisi, D., Petrosino, G.: Robots that have emotions. Adaptive Behavior 18, 453–469 (2010)CrossRefGoogle Scholar
  6. 6.
    Lee, W.P., Kuo, J.W., Lai, P.C.: Building adaptive emotion-based pet robots. In: Proceedings of the World Congress on Engineering, WCE 2008 (2008)Google Scholar
  7. 7.
    Liang, J., Dong, D., Wang, X.: An artificial endocrine-emotion model based on fuzzy logic. In: Zhu, R., Ma, Y. (eds.) Information Engineering and Applications. LNEE, vol. 154, pp. 307–314. Springer, London (2012)CrossRefGoogle Scholar
  8. 8.
    Kim, H.R., Kwon, D.S.: Computational model of emotion generation for human-robot interaction based on the cognitive appraisal theory. Journal of Intelligent and Robotic Systems 60(2), 263–283 (2010)CrossRefzbMATHGoogle Scholar
  9. 9.
    Park, J.W., Kim, W.H., Lee, W.H., Chung, M.J.: Artificial emotion generation based on personality, mood, and emotion for life-like facial expressions of robots. In: Forbrig, P., Paternó, F., Mark Pejtersen, A. (eds.) HCIS 2010. IFIP AICT, vol. 332, pp. 223–233. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Ekman, P., Friesen, W.V.: Unmasking the face: A guide to recognizing emotions from facial clues. Prentice-Hall, Oxford (1975)Google Scholar
  11. 11.
    Zhang, G., Li, Z.: The emotion mechanism of artificial life fight behavior. In: Proceedings of the International Conference on Computational Intelligence and Natural Computing, CINC 2009, vol. 1, pp. 15–18 (June 2009)Google Scholar
  12. 12.
    Lv, D., Wang, Y., Guo, C., Pan, Z., Shi, H.: Music-driven emotion model applied in digitalized dance performance of sacrificial ceremony for confucius. In: Pan, Z., Cheok, A.D., Müller, W., Liarokapis, F. (eds.) Transactions on Edutainment IX. LNCS, vol. 7544, pp. 205–212. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Park, C., Ryu, J., Kang, S., Kim, J., Sohn, J., Cho, H.: The emotion expression robot through the affective interaction: Kobie. In: Proceedings of the 1st International Conference on Robot Communication and Coordination, RoboComm 2007, pp. 53:1–53:4. IEEE Press, Piscataway (2007)Google Scholar
  14. 14.
    Zecca, M., Roccella, S., Carrozza, M.C., Miwa, H., Itoh, K., Cappiello, G., Cabibihan, J.J., Matsumoto, M., Takanobu, H., Dario, P., Takanishi, A.: On the development of the emotion expression humanoid robot WE-4RII with RCH-1, vol. 1, pp. 235–252 (June 2005)Google Scholar
  15. 15.
    Breazeal, C.: Emotion and sociable humanoid robots. International Journal of Human-Computer Studies 59(1-2), 119–155 (2003)CrossRefGoogle Scholar
  16. 16.
    Salichs, M.A., Malfaz, M.: A new approach to modeling emotions and their use on a decision-making system for artificial agents. IEEE Transactions on Affective Computing 3(1), 56–68 (2012)CrossRefGoogle Scholar
  17. 17.
    Maria, K.A., Zitar, R.A.: Emotional agents: A modeling and an application. Information and Software Technology 49(7), 695–716 (2007)CrossRefGoogle Scholar
  18. 18.
    Cai, Z., Goertzel, B., Zhou, C., Zhang, Y., Jiang, M., Yu, G.: Dynamics of a computational affective model inspired by drners {PSI} theory. Cognitive Systems Research 1718, 63–80 (2012)CrossRefGoogle Scholar
  19. 19.
    Becker, C., Kopp, S., Wachsmuth, I.: Simulating the emotion dynamics of a multimodal conversational agent. In: André, E., Dybkjær, L., Minker, W., Heisterkamp, P. (eds.) ADS 2004. LNCS (LNAI), vol. 3068, pp. 154–165. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Raïevsky, C., Michaud, F.: Improving situated agents adaptability using interruption theory of emotions. In: Asada, M., Hallam, J.C.T., Meyer, J.-A., Tani, J. (eds.) SAB 2008. LNCS (LNAI), vol. 5040, pp. 301–310. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Sanz, R., Snchez-Escribano, M.G., Herrera, C.: A model of emotion as patterned metacontrol. Biologically Inspired Cognitive Architectures 4, 79–97 (2013)CrossRefGoogle Scholar
  22. 22.
    Nair, S.B., Godfrey, W.W., Kim, D.H.: On realizing a multi-agent emotion engine. International Journal of Synthetic Emotions (IJSE), 1–27 (2011)Google Scholar
  23. 23.
    Martin, W.A.: Introduction and overview of artificial life evolving intelligent agents for modeling and simulation. In: Proceedings of the 28th Conference on Winter Simulation, pp. 161–168. IEEE Computer Society (1996)Google Scholar
  24. 24.
    Bedau, M.A.: Open problems in artificial life. Artif. Life 6(4), 363–376 (2000)CrossRefGoogle Scholar
  25. 25.
    Olivier, M.: An artificial life approach for the synthesis of autonomous agents, pp. 220–231. Springer, London (1996)Google Scholar
  26. 26.
    Sung-Bae, C.: Applications of artificial life to developing robot and softbot. Artificial Life and Robotics 5, 142–147 (2001)CrossRefGoogle Scholar
  27. 27.
    Kenji, I., Ikuo, S., Masahito, Y., Masashi, F.: Behavior emergence of a virtual creature living in complex environments. Artificial Life and Robotics 16, 185–189 (2011)CrossRefGoogle Scholar
  28. 28.
    Matthias, S.: Useful roles of emotions in artificial agents: a case study from artificial life. In: Proceedings of the 19th National Conference on Artifical Intelligence, AAAI 2004, pp. 42–47. AAAI Press (2004)Google Scholar
  29. 29.
    Nair, S.B., Godfrey, W.W., Kim, D.H.: Towards a dynamic emotional model. In: Proceeding of the IEEE International Symposium on Industrial Electronics, pp. 1932–1936 (2009)Google Scholar
  30. 30.
    Jha, S.S., Naika C.L., S., Nikhra, V., Nair, S.B.: On using emotions in decision-making by situated robots. In: Proceedings of 12th International Conference on Hybrid Intelligent Systems (HIS), pp. 372–377 (December 2012)Google Scholar
  31. 31.
    Cañamero, L.: Emotion understanding from the perspective of autonomous robots research. Neural Networks 18(4), 445–455 (2005)CrossRefGoogle Scholar
  32. 32.
    Wilson, S.W.: Knowledge growth in an artificial animal. In: Proceedings of the 1st International Conference on Genetic Algorithms, Hillsdale, NJ, USA, pp. 16–23. L. Erlbaum Associates Inc. (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shashi Shekhar Jha
    • 1
  • Shrinivasa Naika C.L.
    • 1
  • Shivashankar B. Nair
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology GuwahatiAssamIndia

Personalised recommendations