EvoMatch: An Evolutionary Algorithm for Inferring Schematic Correspondences

  • Chenjuan Guo
  • Cornelia Hedeler
  • Norman W. Paton
  • Alvaro A. A. Fernandes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8320)


Schema matching provides an important foundation for both manual and semi-automatic derivation of mappings between sources. However, schema matchers typically return large numbers of potentially inconsistent matches that are neither conducive to automatic mapping generation nor readily digested by mapping developers. This paper presents a method, EvoMatch, for automatically inferring schematic correspondences, from which mappings can be generated directly. It aims to offer a more expressive characterization of the relationships between sources than matches identified by existing schema matching methods. In particular, the paper contributes: i) an evolutionary search method for inferring schematic correspondences; ii) an objective function for calculating the fitness value of a solution within the search space; and iii) an empirical evaluation assessing the effectiveness of EvoMatch for inferring schematic correspondences in comparison with well established existing techniques. In doing so, EvoMatch automatically identifies correspondences that can be used directly to bootstrap information integration systems, or to inform the manual refinement of mappings.


Schema Match Equivalent Attribute Evolutionary Search Schematic Correspondence Input Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Halevy, A.Y., Rajaraman, A., Ordille, J.J.: Data integration: The teenage years. In: VLDB, pp. 9–16 (2006)Google Scholar
  2. 2.
    Do, H., Rahm, E.: Matching large schemas: Approaches and evaluation. Information Systems 32(6), 857–885 (2007)CrossRefGoogle Scholar
  3. 3.
    Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph matching algorithm and itsapplication to schema matching. In: ICDE, pp. 117–128 (2002)Google Scholar
  4. 4.
    Dhamankar, R., Lee, Y., Doan, A., Halevy, A.Y., Domingos, P.: imap: Discovering complex mappings between database schemas. In: SIGMOD Conference, pp. 383–394 (2004)Google Scholar
  5. 5.
    Fagin, R., Haas, L.M., Hernández, M., Miller, R.J., Popa, L., Velegrakis, Y.: Clio: Schema mapping creation and data exchange. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 198–236. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Bonifati, A., Chang, E.Q., Ho, T., Lakshmanan, L.V.S., Pottinger, R., Chung, Y.: Schema mapping and query translation in heterogeneous p2p xml databases. VLDB J. 19(2), 231–256 (2010)CrossRefGoogle Scholar
  7. 7.
    Bonifati, A., Mecca, G., Pappalardo, A., Raunich, S., Summa, G.: Schema mapping verification: the spicy way. In: EDBT, pp. 85–96 (2008)Google Scholar
  8. 8.
    Marnette, B., Mecca, G., Papotti, P., Raunich, S., Santoro, D.: ++spicy: an opensource tool for second-generation schema mapping and data exchange. PVLDB 4(12), 1438–1441 (2011)Google Scholar
  9. 9.
    Franklin, M., Halevy, A., Maier, D.: From databases to dataspaces: a new abstraction for information management. SIGMOD Record 34(4), 27–33 (2005)CrossRefGoogle Scholar
  10. 10.
    Belhajjame, K., Paton, N.W., Embury, S.M., Fernandes, A.A.A., Hedeler, C.: Feedback-based annotation, selection and refinement of schema mappings for dataspaces. In: EDBT, pp. 573–584 (2010)Google Scholar
  11. 11.
    Salles, M.A.V., Dittrich, J.-P., Karakashian, S.K., Girard, O.R., Blunschi, L.: itrails: Pay-as-you-go information integration in dataspaces. In: VLDB, pp. 663–674 (2007)Google Scholar
  12. 12.
    Sarma, A.D., Dong, X., Halevy, A.Y.: Bootstrapping pay-as-you-go data integration systems. In: SIGMOD Conference, pp. 861–874 (2008)Google Scholar
  13. 13.
    Mao, L., Belhajjame, K., Paton, N.W., Fernandes, A.A.A.: Defining and using schematic correspondences for automatically generating schema mappings. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 79–93. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Kim, W., Seo, J.: Classifying schematic and data heterogeneity in multidatabase systems. IEEE Computer 24(12), 12–18 (1991)CrossRefGoogle Scholar
  15. 15.
    Bernstein, P.A., Madhavan, J., Rahm, E.: Generic schema matching, ten years later. PVLDB 4(11), 695–701 (2011)Google Scholar
  16. 16.
    Cafarella, M.J., Halevy, A.Y., Wang, D.Z., Wu, E., Zhang, Y.: Webtables: exploring the power of tables on the web. PVLDB 1(1), 538–549 (2008)Google Scholar
  17. 17.
    Smith, K., Morse, M., Mork, P., Li, M.H., Rosenthal, A., Allen, D., Seligman, L.: The role of schema matching in large enterprises. In: CIDR (2009)Google Scholar
  18. 18.
    Kang, J., Naughton, J.F.: Schema matching using interattribute dependencies. IEEE Trans. Knowl. Data Eng. 20(10), 1393–1407 (2008)CrossRefGoogle Scholar
  19. 19.
    Bilke, A., Naumann, F.: Schema matching using duplicates. In: ICDE, pp. 69–80 (2005)Google Scholar
  20. 20.
    Wang, T., Pottinger, R.: Semap: a generic mapping construction system. In: EDBT, pp. 97–108 (2008)Google Scholar
  21. 21.
    Giunchiglia, F., Yatskevich, M., Shvaiko, P.: Semantic matching: Algorithms and implementation. J. Data Semantics 9, 1–38 (2007)Google Scholar
  22. 22.
    Rizopoulos, N.: Automatic discovery of semantic relationships between schema elements. In: ICEIS, vol. (1), pp. 3–8 (2004)Google Scholar
  23. 23.
    Xu, L., Embley, D.W.: A composite approach to automating direct and indirect schema mappings. Inf. Syst. 31(8), 697–732 (2006)CrossRefGoogle Scholar
  24. 24.
    Dai, B.T., Koudas, N., Srivastava, D., Tung, A.K.H., Venkatasubramanian, S.: Validating multi-column schema matchings by type. In: ICDE, pp. 120–129 (2008)Google Scholar
  25. 25.
    Warren, R.H., Tompa, F.W.: Multi-column substring matching for database schema translation. In: VLDB, pp. 331–342 (2006)Google Scholar
  26. 26.
    Miller, G.A.: Wordnet: A lexical database for english, Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  27. 27.
    Elmeleegy, H., Ouzzani, M., Elmagarmid, A.K.: Usage-based schema matching. In: ICDE, pp. 20–29 (2008)Google Scholar
  28. 28.
    Madhavan, J., Bernstein, P.A., Doan, A., Halevy, A.Y.: Corpus-based schema matching. In: ICDE, pp. 57–68 (2005)Google Scholar
  29. 29.
    Haas, L., Hernández, M., Ho, H., Popa, L., Roth, M.: Clio grows up: from research prototype to industrial tool. In: ACM SIGMOD, pp. 805–810 (2005)Google Scholar
  30. 30.
    Alexe, B., Chiticariu, L., Miller, R.J., Tan, W.C.: Muse: Mapping understanding and design by example. In: ICDE, pp. 10–19 (2008)Google Scholar
  31. 31.
    Ozsu, M.T., Valduriez, P.: Principles of distributed database systems. Addison-Wesley, Reading (1989)Google Scholar
  32. 32.
    Eiben, A., Smith, J.: Introduction to evolutionary computing. Springer (2003)Google Scholar
  33. 33.
    Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)CrossRefGoogle Scholar
  34. 34.
    Michalewicz, Z., Fogel, D.: How to solve it: modern heuristics. Springer-Verlag New York Inc. (2004)Google Scholar
  35. 35.
    Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern information retrieval. ACM Press, New York (1999)Google Scholar
  36. 36.
    Miller, R.J., Fisla, D., Huang, M., Kymlicka, D., Ku, F., Lee, V.: The Amalgam Schema and Data Integration Test Suite (2001),
  37. 37.
    Engmann, D., Maßmann, S.: Instance matching with coma++. In: BTW Workshops, pp. 28–37 (2007)Google Scholar
  38. 38.
    Massmann, S., Engmann, D., Rahm, E.: Coma++: Results for the ontology alignment contest oaei, Ontology Matching (2006)Google Scholar
  39. 39.
    Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.: Distributed graphlab: A framework for machine learning and data mining in the cloud. Proceedings of the VLDB Endowment 5(8), 716–727 (2012)Google Scholar
  40. 40.
    Yuan, P., Sha, C., Wang, X., Yang, B., Zhou, A., Yang, S.: Xml structural similarity search using mapreduce. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds.) WAIM 2010. LNCS, vol. 6184, pp. 169–181. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  41. 41.
    Kolb, L., Thor, A., Rahm, E.: Load balancing for mapreduce-based entity resolution. In: 2012 IEEE 28th International Conference on Data Engineering (ICDE), pp. 618–629. IEEE (2012)Google Scholar
  42. 42.
    Ma, Q., Yang, B., Qian, W., Zhou, A.: Query processing of massive trajectory data based on mapreduce. In: CloudDb, pp. 9–16 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chenjuan Guo
    • 1
  • Cornelia Hedeler
    • 1
  • Norman W. Paton
    • 1
  • Alvaro A. A. Fernandes
    • 1
  1. 1.School of Computer ScienceUniversity of ManchesterUK

Personalised recommendations