Integrative Functional Statistics in Logic Programming

  • Nicos Angelopoulos
  • Vítor Santos Costa
  • João Azevedo
  • Jan Wielemaker
  • Rui Camacho
  • Lodewyk Wessels
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7752)


We present r..eal , a library that integrates the R statistical environment with Prolog. Due to R’s functional programming affinity the interface introduced has a minimalistic feel. Programs utilising the library syntax are elegant and succinct with intuitive semantics and clear integration. In effect, the library enhances logic programming with the ability to tap into the vast wealth of statistical and probabilistic reasoning available in R. The software is a useful addition to the efforts towards the integration of statistical reasoning and knowledge representation within an AI context. Furthermore it can be used to open up new application areas for logic programming and AI techniques such as bioinformatics, computational biology, text mining, psychology and neuro sciences, where R has particularly strong presence.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alves, A., Camacho, R., Oliveira, E.: Discovery of functional relationships in multi-relational data using inductive logic programming. In: IEEE Int. Conf. on Data Mining, pp. 319–322. IEEE Comp. Society, CA (2004)CrossRefGoogle Scholar
  2. 2.
    Angelopoulos, N., Cussens, J.: Bayesian learning of Bayesian networks with informative priors. Journal of Annals of Mathematics and Artificial Intelligence 54(1-3), 53–98 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Angelopoulos, N., Shannon, P., Wessels, L.: Search and rescue: logic and visualisation of biochemical networks. In: Proceedings of the ICLP 2012 Workshop on Constraints in Bioinformatics (WCB 2012), Budapest, Hungary, pp. 1–6 (September 2012)Google Scholar
  4. 4.
    Angelopoulos, N., Taylor, P.: An extensible web interface for databases and its application to storing biochemical data. In: WLPE 2010, Scotland (July 2010)Google Scholar
  5. 5.
    Becker, R.A., Chambers, J.M., Wilks, A.R.: The New S Language: A Programming Environment for Data Analysis and Graphics. Wadsworth & Brooks/Cole, USA (1988)zbMATHGoogle Scholar
  6. 6.
    Costa, V.S., Page, D., Qazi, M., Cussens, J.: CLP(BN): Constraint logic programming for probabilistic knowledge. In: Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence (UAI 2003), pp. 517–524 (2003)Google Scholar
  7. 7.
    Costa, V.S., Rocha, R., Damas, L.: The YAP Prolog system. Journal of Theory and Practice of Logic Programming 12, 5–34 (2012)Google Scholar
  8. 8.
    Csardi, G., Nepusz, T.: The igraph software package for complex network research. InterJournal, Complex Systems 1695 (2006)Google Scholar
  9. 9.
    Cussens, J.: Stochastic logic programs: Sampling, inference and applications. In: Sixteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI 2000), San Francisco, CA, pp. 115–122 (2000)Google Scholar
  10. 10.
    Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., Weingessel, A.: e1071: Misc Functions of the Department of Statistics (e1071), TU Wien (2011)Google Scholar
  11. 11.
    Gentleman, R.C., Carey, V.J., Bates, D.M., et al.: Bioconductor: Open software development for computational biology and bioinformatics. Genome Biology 5, R80 (2004)Google Scholar
  12. 12.
    Kimmig, A., Demoen, B., Raedt, L.D., Costa, V.S., Rocha, R.: On the implementation of the probabilistic logic programming language ProbLog. Theory and Practice of Logic Programming 11, 235–262 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Murtagh, F.: Multidimensional Clustering Algorithms, COMPSTAT Lectures, vol. 4. Physica-Verlag, Wuerzburg (1985)Google Scholar
  14. 14.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab, Previous number = SIDL-WP-1999-0120 (November 1999),
  15. 15.
    R Development Core Team. R: A Language and Environment for Statistical Computing. R Found. for Stat. Comp., Vienna, Austria (2011),
  16. 16.
    Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical modeling. Journal of AI Research 15, 391–454 (2001)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Shannon, P.: RCytoscape: Display and manipulate graphs in Cytoscape. R package (2011)Google Scholar
  18. 18.
    Srinivasan, A.: The Aleph Manual. University of Oxford (2004)Google Scholar
  19. 19.
    Wielemaker, J., Angelopoulos, N.: Syntactic integration of external languages in Prolog. In: ICLP Workshop on Logic-based methods in Programming Environments (WLPE 2012), Budapest, Hungary, pp. 40–50 (September 2012)Google Scholar
  20. 20.
    Wielemaker, J., Costa, V.S.: On the portability of Prolog applications. In: Rocha, R., Launchbury, J. (eds.) PADL 2011. LNCS, vol. 6539, pp. 69–83. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory and Practice of Logic Programming 12(1-2), 67–96 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zhou, N.-F.: The language features and architecture of B-Prolog. Theory and Practice of Logic Programming 12, 189–218 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nicos Angelopoulos
    • 1
    • 2
  • Vítor Santos Costa
    • 3
    • 4
  • João Azevedo
    • 5
  • Jan Wielemaker
    • 6
  • Rui Camacho
    • 5
  • Lodewyk Wessels
    • 1
    • 2
  1. 1.Bioinformatics and StatisticsNetherlands Cancer InstituteAmsterdamNetherlands
  2. 2.The Netherlands Consortium for Systems Biology (NCSB)Netherlands
  3. 3.CRACS-INESC Porto LAUniversidade do PortoPortugal
  4. 4.DCC-FCUPUniversidade do PortoPortoPortugal
  5. 5.LIAAD & DEI & Faculdade de EngenhariaUniversidade do PortoPortugal
  6. 6.Vrije Universiteit AmsterdamNetherlands

Personalised recommendations