Advertisement

Colored Quadrangulations with Steiner Points

  • Victor Alvarez
  • Atsuhiro Nakamoto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8296)

Abstract

Let P ⊂ ℝ2 be a k-colored set of n points in general position, where k ≥ 2. A k-colored quadrangulation on P is a properly colored straight-edge plane graph G with vertex set P such that the boundary of the unbounded face of G coincides with CH(P) and that each bounded face of G is quadrilateral, where CH(P) stands for the boundary of the convex hull of P. It is easily checked that in general not every k-colored P admits a k-colored quadrangulation, and hence we need the use of Steiner points, that is, auxiliary points which can be put in any position of the interior of the convex hull of P and can have any color among the k colors. In this paper, we show that if P satisfies some condition for colors of the points in the convex hull, then a k-colored quadrangulation of P can always be constructed using less than \( \frac{(16 k-2) n+7 k-2}{39 k-6}\) Steiner points. Our upper bound improves the known upper bound for k = 3, and gives the first bounds for k ≥ 4.

Keywords

Convex Hull Interior Point Convex Polygon Steiner Point Color Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvarez, V., Sakai, T., Urrutia, J.: Bichromatic quadrangulations with steiner points. Graph. Combin. 23, 85–98 (2007)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bremner, D., Hurtado, F., Ramaswami, S., Sacristan, V.: Small strictly convex quadrilateral meshes of point sets. Algorithmica 38, 317–339 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bose, P., Toussaint, G.T.: Characterizing and efficiently computing quadrangulations of planar point sets. Computer Aided Geometric Design 14, 763–785 (1997)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bose, P., Ramaswami, S., Toussaint, G.T., Turki, A.: Experimental results on quadrangulations of sets of fixed points. Computer Aided Geometric Design 19, 533–552 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cortés, C., Márquez, A., Nakamoto, A., Valenzuela, J.: Quadrangulations and 2-colorations. In: EuroCG, pp. 65–68. Technische Universiteit Eindhoven (2005)Google Scholar
  6. 6.
    Heredia, V.M., Urrutia, J.: On convex quadrangulations of point sets on the plane. In: Akiyama, J., Chen, W.Y.C., Kano, M., Li, X., Yu, Q. (eds.) CJCDGCGT 2005. LNCS, vol. 4381, pp. 38–46. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Kato, S., Mori, R., Nakamoto, A.: Quadrangulations on 3-colored point sets with steiner points and their winding number. Graphs Combin., DOI 10.1007/s00373-013-1346-4Google Scholar
  8. 8.
    Lai, M.-J., Schumaker, L.L.: Scattered data interpolation using c2 supersplines of degree six. SIAM J. Numer. Anal. 34, 905–921 (1997)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Ramaswami, S., Ramos, P.A., Toussaint, G.T.: Converting triangulations to quadrangulations. Comput. Geom. 9, 257–276 (1998)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Schiffer, T., Aurenhammer, F., Demuth, M.: Computing convex quadrangulations. Discrete Applied Math. 160, 648–656 (2012)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Toussaint, G.T.: Quadrangulations of planar sets. In: Sack, J.-R., Akl, S.G., Dehne, F., Santoro, N. (eds.) WADS 1995. LNCS, vol. 955, pp. 218–227. Springer, Heidelberg (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Victor Alvarez
    • 1
  • Atsuhiro Nakamoto
    • 2
  1. 1.Fachrichtung InformatikUniversität des SaarlandesSaarbrückenGermany
  2. 2.Department of MathematicsYokohama National UniversityYokohamaJapan

Personalised recommendations