Maximum st-Flow in Directed Planar Graphs via Shortest Paths

  • Glencora Borradaile
  • Anna Harutyunyan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8288)


In this paper, we give a correspondence between maximum flows and shortest paths via duality in directed planar graphs with no constraints on the source and sink.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borradaile, G.: Exploiting Planarity for Network Flow and Connectivity Problems. PhD thesis, Brown University (2008)Google Scholar
  2. 2.
    Borradaile, G., Harutyunyan, A.: Maximum st-flow in directed planar graphs via shortest paths. Technical report, arXiv:1305.5823 (2013)Google Scholar
  3. 3.
    Borradaile, G., Harutyunyan, A.: Boundary-to-boundary flows in planar graphs. In: Lecroq, T., Mouchard, L. (eds.) IWOCA 2013. LNCS, vol. 8288, Springer, Heidelberg (2013)Google Scholar
  4. 4.
    Borradaile, G., Klein, P.: An O(n logn) algorithm for maximum st-flow in a directed planar graph. J. of the ACM 56(2), 1–30 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Erickson, J.: Maximum flows and parametric shortest paths in planar graphs. In: Proc. SODA, pp. 794–804 (2010)Google Scholar
  6. 6.
    Ford, C., Fulkerson, D.: Maximal flow through a network. Canadian J. Math. 8, 399–404 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hassin, R.: Maximum flow in (s,t) planar networks. IPL 13, 107 (1981)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hochbaum, D.: The pseudoflow algorithm: A new algorithm for the maximum-flow problem. Operations Research 56(4), 992–1009 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Johnson, D., Venkatesan, S.: Partition of planar flow networks. In: Proc. SFCS, pp. 259–264 (1983)Google Scholar
  10. 10.
    Kaplan, H., Nussbaum, Y.: Minimum st-cut in undirected planar graphs when the source and the sink are close. In: Proc. STACS, pp. 117–128 (2011)Google Scholar
  11. 11.
    Sleator, D., Tarjan, R.: A data structure for dynamic trees. JCSS 26(3), 362–391 (1983)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Spanier, E.: Algebraic Topology. Springer (1994)Google Scholar
  13. 13.
    Tarjan, R., Werneck, R.: Dynamic trees in practice. J. Exp. Algorithmics 14, 5:4.5–5:4.23 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Glencora Borradaile
    • 1
  • Anna Harutyunyan
    • 2
  1. 1.Oregon State UniversityUSA
  2. 2.Vrije Universiteit BrusselBelgium

Personalised recommendations