Circuit Complexity of Shuffle

  • Michael Soltys
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8288)

Abstract

We show that Shuffle(x,y,w), the problem of determining whether a string w can be composed from an order preserving shuffle of strings x and y, is not in AC0, but it is in AC1. The fact that shuffle is not in AC0 is shown by a reduction of parity to shuffle and invoking the seminal result [FSS84, while the fact that it is in AC1 is implicit in the results of [Man82a]. Together, the two results provide a strong complexity bound for this combinatorial problem.

Keywords

String shuffle circuit complexity lower bounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ABC+09]
    Allender, E., et al.: Planar and grid graph reachability problems. Theory of Computing Systems 45, 675–723 (2009)MathSciNetCrossRefMATHGoogle Scholar
  2. [BS13]
    Buss, S.R., Soltys, M.: Unshuffling a square is NP-hard (submitted for publication, March 2013)Google Scholar
  3. [BTV07]
    Bourke, C., Tewari, R., Vinodchandran, N.V.: Directed planar reachability is in unambiguous log-space. In: Proceedings of IEEE Conference on Computational Complexity CCC (2007)Google Scholar
  4. [Coo85]
    Cook, S.A.: A taxonomy of problems with fast parallel algorithms. Information and Computation 64(13), 2–22 (1985)MATHGoogle Scholar
  5. [FSS84]
    Furst, M., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Math. Systems Theory 17, 13–27 (1984)MathSciNetCrossRefMATHGoogle Scholar
  6. [GH09]
    Gruber, H., Holzer, M.: Tight Bounds on the Descriptional Complexity of Regular Expressions. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 276–287. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. [Gis81]
    Gischer, J.: Shuffle languages, petri nets, and context-sensivite grammars. Communications of the ACM 24(9), 597–605 (1981)MathSciNetCrossRefMATHGoogle Scholar
  8. [GS65]
    Ginsburg, S., Spanier, E.: Mappings of languages by two-tape devices. Journal of the A.C.M 12(3), 423–434 (1965)MathSciNetMATHGoogle Scholar
  9. [Jan81]
    Jantzen, M.: The power of synchronizing operations on strings. Theoretical Computer Science 14, 127–154 (1981)MathSciNetCrossRefMATHGoogle Scholar
  10. [Jan85]
    Jantzen, M.: Extending regular expressions with iterated shuffle. Theoretical Computer Science 38, 223–247 (1985)MathSciNetCrossRefMATHGoogle Scholar
  11. [Jed99]
    Jedrzejowicz, J.: Structural properties of shuffle automata. Grammars 2(1), 35–51 (1999)MathSciNetCrossRefMATHGoogle Scholar
  12. [JS01]
    Jedrzejowicz, J., Szepietowski, A.: Shuffle languages are in P. Theoretical Computer Science 250(1-2), 31–53 (2001)MathSciNetCrossRefMATHGoogle Scholar
  13. [JS05]
    Jedrzejowicz, J., Szepietowski, A.: On the expressive power of the shuffle operator matched with intersection by regular sets. Theoretical Informatics and Applications 35, 379–388 (2005)MathSciNetCrossRefGoogle Scholar
  14. [Man82a]
    Mansfield, A.: An algorithm for a merge recognition problem. Discrete Applied Mathematics 4(3), 193–197 (1982)MathSciNetCrossRefMATHGoogle Scholar
  15. [Man82b]
    Mansfield, A.: An algorithm for a merge recognition problem. Discrete Applied Mathematics 4(3), 193–197 (1982)MathSciNetCrossRefMATHGoogle Scholar
  16. [Man83]
    Mansfield, A.: On the computational complexity of a merge recognition problem. Discrete Applied Mathematics 1(3), 119–122 (1983)MathSciNetCrossRefGoogle Scholar
  17. [MS94]
    Mayer, A.J., Stockmeyer, L.J.: The complexity of word problems — this time with interleaving. Information and Computation 115, 293–311 (1994)MathSciNetCrossRefGoogle Scholar
  18. [ORR78]
    Ogden, W.F., Riddle, W.E., Rounds, W.C.: Complexity of expressions allowing concurrency. In: Proc. 5th ACM Symposium on Principles of Programming Languages (POPL), pp. 185–194 (1978)Google Scholar
  19. [Pap94]
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)Google Scholar
  20. [Rid73]
    Riddle, W.E.: A method for the description and analysis of complex software systems. SIGPLAN Notices 8(9), 133–136 (1973)CrossRefGoogle Scholar
  21. [Rid79]
    Riddle, W.E.: An approach to software system modelling and analysis. Computer Languages 4(1), 49–66 (1979)CrossRefMATHGoogle Scholar
  22. [Sha78]
    Shaw, A.C.: Software descriptions with flow expressions. IEEE Transactions on Software Engineering SE-4(3), 242–254 (1978)CrossRefGoogle Scholar
  23. [Sho02]
    Shoudai, T.: A P-complete language describable with iterated shuffle. Information Processing Letters 41(5), 233–238, 1002Google Scholar
  24. [Sip06]
    Sipser, M.: Introduction to the Theory of Computation, 2nd edn. Thompson (2006)Google Scholar
  25. [Sol09]
    Soltys, M.: An introduction to computational complexity. Jagiellonian University Press (2009)Google Scholar
  26. [SP95]
    Schöning, U., Pruim, R.: Gems of Theoretical Computer Science. Springer (1995)Google Scholar
  27. [Sud78]
    Sudborough, I.H.: On the tape complexity of deterministic context-free languages. Journal of the Association of Computing Machinery 25, 405–415 (1978)MathSciNetCrossRefMATHGoogle Scholar
  28. [Ven91]
    Venkateswaran, H.: Properties that characterize LOGCFL. Journal of Computer and System Science 43, 380–404 (1991)MathSciNetCrossRefMATHGoogle Scholar
  29. [WH84]
    Warmuth, M.K., Haussler, D.: On the complexity of iterated shuffle. Journal of Computer and System Sciences 28(3), 345–358 (1984)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael Soltys
    • 1
  1. 1.Dept.of Computing & SoftwareMcMaster UniversityHamiltonCanada

Personalised recommendations