IWOCA 2013: Combinatorial Algorithms pp 106-114

# Incidence Coloring Game and Arboricity of Graphs

• Clément Charpentier
• Éric Sopena
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8288)

## Abstract

An incidence of a graph G is a pair (v,e) where v is a vertex of G and e an edge incident to v. Two incidences (v,e) and (w,f) are adjacent whenever v = w, or e = f, or vw = e or f. The incidence coloring game [S.D. Andres, The incidence game chromatic number, Discrete Appl. Math. 157 (2009), 1980–1987] is a variation of the ordinary coloring game where the two players, Alice and Bob, alternately color the incidences of a graph, using a given number of colors, in such a way that adjacent incidences get distinct colors. If the whole graph is colored then Alice wins the game otherwise Bob wins the game. The incidence game chromatic number i g (G) of a graph G is the minimum number of colors for which Alice has a winning strategy when playing the incidence coloring game on G.

Andres proved that $$i_g(G) \le 2\varDelta(G) + 4k - 2$$ for every k-degenerate graph G. We show in this paper that $$i_g(G) \le \lfloor\frac{3\varDelta(G) - a(G)}{2}\rfloor + 8a(G) - 2$$ for every graph G, where a(G) stands for the arboricity of G, thus improving the bound given by Andres since a(G) ≤ k for every k-degenerate graph G. Since there exists graphs with $$i_g(G) \ge \lceil\frac{3\varDelta(G)}{2}\rceil$$, the multiplicative constant of our bound is best possible.

## Keywords

Arboricity Incidence coloring Incidence coloring game Incidence game chromatic number

## References

1. 1.
Andres, S.: The incidence game chromatic number. Discrete Appl. Math. 157, 1980–1987 (2009)
2. 2.
Bartnicki, T., Grytczuk, J., Kierstead, H.A., Zhu, X.: The map coloring game. Amer. Math. Monthly (November 2007)Google Scholar
3. 3.
Bodlaender, H.: On the complexity of some coloring games. Int. J. Found. Comput. Sci. 2, 133–147 (1991)
4. 4.
Brualdi, R., Massey, J.: Incidence and strong edge colorings of graphs. Discrete Math. 122, 51–58 (1993)
5. 5.
Charpentier, C., Sopena, E.: The incidence game chromatic number of forests (preprint, 2013)Google Scholar
6. 6.
Dinski, T., Zhu, X.: Game chromatic number of graphs. Discrete Math. 196, 109–115 (1999)
7. 7.
Gardner, M.: Mathematical game. Scientific American 23 (1981)Google Scholar
8. 8.
Hosseini Dolama, M., Sopena, E.: On the maximum average degree and the incidence chromatic number of a graph. Discrete Math. and Theoret. Comput. Sci. 7(1), 203–216 (2005)
9. 9.
Hosseini Dolama, M., Sopena, E., Zhu, X.: Incidence coloring of k-degenerated graphs. Discrete Math. 283, 121–128 (2004)
10. 10.
Kierstead, H.: A simple competitive graph coloring algorithm. J. Combin. Theory Ser. B 78(1), 57–68 (2000)
11. 11.
Kierstead, H., Trotter, W.: Planar graph coloring with an uncooperative partner. J. Graph Theory 18, 569–584 (1994)
12. 12.
Kim, J.: The incidence game chromatic number of paths and subgraphs of wheels. Discrete Appl. Math. 159, 683–694 (2011)
13. 13.
Maydansky, M.: The incidence coloring conjecture for graphs of maximum degree three. Discrete Math. 292, 131–141 (2005)
14. 14.
15. 15.
Wang, S., Chen, D., Pang, S.: The incidence coloring number of Halin graphs and outerplanar graphs. Discrete Math. 256, 397–405 (2002)
16. 16.
Zhu, X.: The game coloring number of planar graphs. J. Combin. Theory Ser. B 75(2), 245–258 (1999)
17. 17.
Zhu, X.: Refined activation strategy for the marking game. J. Combin. Theory Ser. B 98(1), 1–18 (2008)

## Authors and Affiliations

• Clément Charpentier
• 1
• 2
• Éric Sopena
• 1
• 2
1. 1.LaBRI, UMR5800Univ. BordeauxTalenceFrance
2. 2.LaBRI, UMR5800CNRSTalenceFrance