Advertisement

Incidence Coloring Game and Arboricity of Graphs

  • Clément Charpentier
  • Éric Sopena
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8288)

Abstract

An incidence of a graph G is a pair (v,e) where v is a vertex of G and e an edge incident to v. Two incidences (v,e) and (w,f) are adjacent whenever v = w, or e = f, or vw = e or f. The incidence coloring game [S.D. Andres, The incidence game chromatic number, Discrete Appl. Math. 157 (2009), 1980–1987] is a variation of the ordinary coloring game where the two players, Alice and Bob, alternately color the incidences of a graph, using a given number of colors, in such a way that adjacent incidences get distinct colors. If the whole graph is colored then Alice wins the game otherwise Bob wins the game. The incidence game chromatic number i g (G) of a graph G is the minimum number of colors for which Alice has a winning strategy when playing the incidence coloring game on G.

Andres proved that \(i_g(G) \le 2\varDelta(G) + 4k - 2\) for every k-degenerate graph G. We show in this paper that \(i_g(G) \le \lfloor\frac{3\varDelta(G) - a(G)}{2}\rfloor + 8a(G) - 2\) for every graph G, where a(G) stands for the arboricity of G, thus improving the bound given by Andres since a(G) ≤ k for every k-degenerate graph G. Since there exists graphs with \(i_g(G) \ge \lceil\frac{3\varDelta(G)}{2}\rceil\), the multiplicative constant of our bound is best possible.

Keywords

Arboricity Incidence coloring Incidence coloring game Incidence game chromatic number 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andres, S.: The incidence game chromatic number. Discrete Appl. Math. 157, 1980–1987 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bartnicki, T., Grytczuk, J., Kierstead, H.A., Zhu, X.: The map coloring game. Amer. Math. Monthly (November 2007)Google Scholar
  3. 3.
    Bodlaender, H.: On the complexity of some coloring games. Int. J. Found. Comput. Sci. 2, 133–147 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brualdi, R., Massey, J.: Incidence and strong edge colorings of graphs. Discrete Math. 122, 51–58 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Charpentier, C., Sopena, E.: The incidence game chromatic number of forests (preprint, 2013)Google Scholar
  6. 6.
    Dinski, T., Zhu, X.: Game chromatic number of graphs. Discrete Math. 196, 109–115 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gardner, M.: Mathematical game. Scientific American 23 (1981)Google Scholar
  8. 8.
    Hosseini Dolama, M., Sopena, E.: On the maximum average degree and the incidence chromatic number of a graph. Discrete Math. and Theoret. Comput. Sci. 7(1), 203–216 (2005)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Hosseini Dolama, M., Sopena, E., Zhu, X.: Incidence coloring of k-degenerated graphs. Discrete Math. 283, 121–128 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kierstead, H.: A simple competitive graph coloring algorithm. J. Combin. Theory Ser. B 78(1), 57–68 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kierstead, H., Trotter, W.: Planar graph coloring with an uncooperative partner. J. Graph Theory 18, 569–584 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kim, J.: The incidence game chromatic number of paths and subgraphs of wheels. Discrete Appl. Math. 159, 683–694 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Maydansky, M.: The incidence coloring conjecture for graphs of maximum degree three. Discrete Math. 292, 131–141 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
  15. 15.
    Wang, S., Chen, D., Pang, S.: The incidence coloring number of Halin graphs and outerplanar graphs. Discrete Math. 256, 397–405 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Zhu, X.: The game coloring number of planar graphs. J. Combin. Theory Ser. B 75(2), 245–258 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Zhu, X.: Refined activation strategy for the marking game. J. Combin. Theory Ser. B 98(1), 1–18 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Clément Charpentier
    • 1
    • 2
  • Éric Sopena
    • 1
    • 2
  1. 1.LaBRI, UMR5800Univ. BordeauxTalenceFrance
  2. 2.LaBRI, UMR5800CNRSTalenceFrance

Personalised recommendations