Advertisement

On the Power of the Adversary to Solve the Node Sampling Problem

  • Emmanuelle Anceaume
  • Yann Busnel
  • Sébastien Gambs
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8290)

Abstract

We study the problem of achieving uniform and fresh peer sampling in large scale dynamic systems under adversarial behaviors. Briefly, uniform and fresh peer sampling guarantees that any node in the system is equally likely to appear as a sample at any non malicious node in the system and that infinitely often any node has a non-null probability to appear as a sample of honest nodes. This sample is built locally out of a stream of node identifiers received at each node. An important issue that seriously hampers the feasibility of node sampling in open and large scale systems is the unavoidable presence of malicious nodes. The objective of malicious nodes mainly consists in continuously and largely biasing the input data stream out of which samples are obtained, to prevent (honest) nodes from being selected as samples. First, we demonstrate that restricting the number of requests that malicious nodes can issue and providing a full knowledge of the composition of the system is a necessary and sufficient condition to guarantee uniform and fresh sampling. We also define and study two types of adversary models: (1) an omniscient adversary that has the capacity to eavesdrop on all the messages that are exchanged within the system, and (2) a blind adversary that can only observe messages that have been sent or received by nodes it controls. The former model allows us to derive lower bounds on the impact that the adversary has on the sampling functionality while the latter one corresponds to a more realistic setting. Given any sampling strategy, we quantify the minimum effort exerted by both types of adversary on any input stream to prevent this sampling strategy from outputting a uniform and fresh sample.

Keywords

Data Stream Kullback-Leibler Divergence Uniform sampling Freshness Byzantine adversary 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and Replication in Unstructured Peer-to-Peer Networks. In: Proceedings of the International Conference on Supercomputing (ICS) (2002)Google Scholar
  2. 2.
    Bertier, M., Busnel, Y., Kermarrec, A.-M.: On Gossip and Populations. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 72–86. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press (2001)Google Scholar
  4. 4.
    Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart, D., Terry, D.: Epidemic algorithms for replicated database management. In: Proceedings of the 6th ACM Symposium on Principles of Distributed Computing (PODC) (1987)Google Scholar
  5. 5.
    Massoulié, L., Merrer, E.L., Kermarrec, A.M., Ganesh, A.: Peer Counting and Sampling in Overlay Networks: Random Walk Methods. In: Proceedings of the 25th Annual Symposium on Principles of Distributed Computing (PODC), pp. 123–132. ACM Press (2006)Google Scholar
  6. 6.
    Stutzbach, D., Rejaie, R., Duffield, N., Sen, S., Willinger, W.: On Unbiased Sampling for Unstructured Peer-to-Peer Networks. IEEE/ACM Transactions on Networking 17(2), 377–390 (2009)CrossRefGoogle Scholar
  7. 7.
    Sit, E., Morris, R.: Security Considerations for Peer-to-Peer Distributed Hash Tables. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 261–269. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Bortnikov, E., Gurevich, M., Keidar, I., Kliot, G., Shraer, A.: Brahms: Byzantine Resilient Random Membership Sampling. Computer Networks 53, 2340–2359 (2009); A former version appeared in the 27th ACM Symposium on Principles of Distributed Computing (PODC) (2008)Google Scholar
  9. 9.
    Awerbuch, B., Scheideler, C.: Group Spreading: A Protocol for Provably Secure Distributed Name Service. In: Proceedings of the 31st International Colloquium on Automata, Languages and Programming (ICALP) (2004)Google Scholar
  10. 10.
    Jesi, G.P., Montresor, A., van Steen, M.: Secure Peer Sampling. Computer Networks 54(12), 2086–2098 (2010)CrossRefzbMATHGoogle Scholar
  11. 11.
    Singh, A., Ngan, T.W., Druschel, P., Wallach, D.S.: Eclipse Attacks on Overlay Networks: Threats and Defenses. In: Proceedings of the 25th IEEE International Conference on Computer Communications (INFOCOM) (2006)Google Scholar
  12. 12.
    Douceur, J.R.: The Sybil Attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Awerbuch, B., Scheideler, C.: Towards a Scalable and Robust Overlay Network. In: Proceedings of the 6th International Workshop on Peer-to-Peer Systems (IPTPS) (2007)Google Scholar
  14. 14.
    Anceaume, E., Ludinard, R., Sericola, B.: Performance evaluation of large-scale dynamic systems. SIGMETRICS Performance Evaluation Review 39(4), 108–117 (2012)CrossRefGoogle Scholar
  15. 15.
    Anceaume, E., Brasileiro, F., Ludinard, R., Sericola, B., Tronel, F.: Dependability Evaluation of Cluster-based Distributed Systems. International Journal of Foundations of Computer Science (IJFCS) 5(22) (2011)Google Scholar
  16. 16.
    Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.M., van Steen, M.: Gossip-based Peer Sampling. ACM Transaction on Computer System 25(3) (2007)Google Scholar
  17. 17.
    Karp, R., Schindelhauer, C., Shenker, S., Vocking, B.: Randomized Rumor Spreading. In: The 41st Annual Symposium on Foundations of Computer Science (FOCS), p. 565. IEEE Computer Society (2000)Google Scholar
  18. 18.
    Voulgaris, S., Gavidia, D., van Steen, M.: CYCLON: Inexpensive Membership Management for Unstructured P2P Overlays. Journal of Network System Management 13(2), 197–217 (2005)CrossRefGoogle Scholar
  19. 19.
    Zhong, M., Shen, K., Seiferas, J.: Non-uniform Random Membership Management in Peer-to-Peer Networks. In: Proceedings of the 24th Annual Joint Conference of the Computer and Communications Societies (INFOCOM). IEEE Press (2005)Google Scholar
  20. 20.
    Awan, A., Ferreira, R.A., Jagannathan, S., Grama, A.: Distributed Uniform Sampling in Unstructured Peer-to-Peer Networks. In: Proceedings of the 39th Annual Hawaii International Conference on System Sciences, HICSS (2006)Google Scholar
  21. 21.
    Castro, M., Druschel, P., Ganesh, A., Rowstron, A., Wallach, D.S.: Secure Routing for Structured Peer-to-peer Overlay Networks. In: Proceedings of the 5th Symposium on Operating Systems Design and Implementation (OSDI). ACM (2002)Google Scholar
  22. 22.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R.M., Shenker, S.: A scalable content-addressable network. In: Proceedings of the ACM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM) (2001)Google Scholar
  23. 23.
    Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek, F., Balakrishnan, H.: Chord: a Scalable Peer-to-Peer Lookup Protocol for Internet Applications. IEEE/ACM Transaction on Networks 11(1), 17–32 (2003)CrossRefGoogle Scholar
  24. 24.
    Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. 25.
    Hildrum, K., Kubiatowicz, J.D.: Asymptotically Efficient Approaches to Fault-tolerance in Peer-to-Peer Networks. In: Fich, F.E. (ed.) DISC 2003. LNCS, vol. 2848, pp. 321–336. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Fiat, A., Saia, J., Young, M.: Making Chord Robust to Byzantine Attacks. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 803–814. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Anceaume, E., Brasileiro, F., Ludinard, R., Ravoaja, A.: PeerCube: an Hypercube-based P2P Overlay Robust against Collusion and Churn. In: Proceedings of the IEEE International Conference on Self-Adaptive and Self-Organizing Systems (2008)Google Scholar
  28. 28.
    Condie, T., Kacholia, V., Sank, S., Hellerstein, J.M., Maniatis, P.: Induced Churn as Shelter from Routing-Table Poisoning. In: Proceedings of the International Network and Distributed System Security Symposium (NDSS) (2006)Google Scholar
  29. 29.
    Liu, D., Ning, P., Du, W.: Detecting Malicious Beacon Nodes for Secure Location Discovery in Wireless Sensor Networks. In: Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICDCS) (2005)Google Scholar
  30. 30.
    Anceaume, E., Busnel, Y., Gambs, S.: Uniform and Ergodic Sampling in Unstructured Peer-to-Peer Systems with Malicious Nodes. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 64–78. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  31. 31.
    Anceaume, E., Busnel, Y., Gambs, S.: Characterizing the adversarial power in uniform and ergodic node sampling. In: Proceedings of the 1st International Workshop on Algorithms and Models for Distributed Event Processing (AlMoDEP). ACM Press (2011)Google Scholar
  32. 32.
    Busnel, Y., Beraldi, R., Baldoni, R.: On the Uniformity of Peer Sampling based on View Shuffling. Elsevier Journal of Parallel and Distributed Computing 71(8), 1165–1176 (2011)CrossRefzbMATHGoogle Scholar
  33. 33.
    Gurevich, M., Keidar, I.: Correctness of Gossip-Based Membership under Message Loss. In: Proceedings of the 28th Annual Symposium on Principles of Distributed Computing (PODC). ACM Press, Calgary (2009)Google Scholar
  34. 34.
    Yu, H., Gibbons, P.B., Kaminsky, M., Xiao, F.: SybilLimit: A Near-Optimal Social Network Defense against Sybil Attacks. In: Proceedings of the IEEE Symposium on Security and Privacy (SP) (2008)Google Scholar
  35. 35.
    Yu, H., Kaminsky, M., Gibbons, P.B., Flaxman, A.: SybilGuard: Defending against Sybil Attacks via Social Networks. In: Proceedings of the ACM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM) (2006)Google Scholar
  36. 36.
    Godfrey, P.B., Shenker, S., Stoica, I.: Minimizing churn in distributed systems. In: Proceedings of the ACM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM) (2006)Google Scholar
  37. 37.
    Cover, T., Thomas, J.: Elements of information theory. Wiley, New York (1991)CrossRefzbMATHGoogle Scholar
  38. 38.
    Ali, S.M., Silvey, S.D.: General Class of Coefficients of Divergence of One Distribution from Another. Journal of the Royal Statistical Society. Series B (Methodological) 28(1), 131–142 (1966)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Anceaume, E., Busnel, Y.: A distributed information divergence estimation over data streams. IEEE Transactions on Parallel and Distributed Systems 99 (2013) (PrePrints)Google Scholar
  40. 40.
    Monge, G.: Mémoire sur la théorie des déblais et des remblais. Histoire de l’Academie royale des sciences, avec les Mémoires de Mathématique et de Physique, 666–704 (1781)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Emmanuelle Anceaume
    • 1
  • Yann Busnel
    • 2
  • Sébastien Gambs
    • 3
  1. 1.CNRSIRISARennesFrance
  2. 2.LINAUniv. de NantesFrance
  3. 3.IRISA, INRIA Rennes – Bretagne AtlantiqueUniv. de Rennes 1France

Personalised recommendations