Advertisement

Techniques for the Identification of Semantically-Equivalent Online Identities

  • Keith Cortis
  • Simon Scerri
  • Ismael Rivera
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8194)

Abstract

The average person today is required to create and separately manage multiple online identities in heterogeneous online accounts. Their integration would enable a single entry point for the management of a person’s digital personal information. Thus, we target the extraction, retrieval and integration of these identities, using a comprehensive ontology framework serving as a standard format. A major challenge to achieve this integration is the discovery of semantic equivalence between multiple online identities (through attributes, relationships, shared posts, etc.). In this paper we outline a hybrid syntactic/semantic-based approach to online identity reconciliation. We also discuss the results of syntactic matching experiments conducted on real data, the current status of the work and our future research and development plans in this direction.

Keywords

semantic equivalence online profile online identity personal information model ontologies social networks semantic lifting semantic web syntactic matching string metrics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akhtar, W., Kopecký, J., Krennwallner, T., Polleres, A.: XSPARQL: Traveling between the XML and RDF worlds – and avoiding the XSLT pilgrimage. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 432–447. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Appelquist, D., Brickley, D., Carvahlo, M., Iannella, R., Passant, A., Perey, C., Story, H.: A standards-based, open and privacy-aware social web. W3c incubator group report, W3C (December 2010)Google Scholar
  3. 3.
    Aumueller, D., Do, H., Massmann, S., Rahm, E.: Schema and ontology matching with coma++. In: Proc. ACM SIGMOD International Conference on Management of Data, New York, NY, USA, pp. 906–908 (2005)Google Scholar
  4. 4.
    Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P., Fienberg, S.: Adaptive name matching in information integration. IEEE Intelligent Systems 18(5), 16–23 (2003)CrossRefGoogle Scholar
  5. 5.
    Bortoli, S., Stoermer, H., Bouquet, P., Wache, H.: Foaf-o-matic - solving the identity problem in the foaf network. In: Proc. Fourth Italian Semantic Web Workshop, SWAP 2007 (2007)Google Scholar
  6. 6.
    Bourimi, M., Scerri, S., Cortis, K., Rivera, I., Heupel, M., Thiel, S.: Integrating multi-source user data to enhance privacy in social interaction. In: Proceedings of the 13th International Conference on Interacción Persona-Ordenador, INTERACCION 2012, pp. 51:1–51:7. ACM, New York (2012)Google Scholar
  7. 7.
    Budanitsky, A., Hirst, G.: Semantic distance in wordnet: An experimental, application-oriented evaluation of five measures. In: Proc. Workshop on Wordnet and other Lexical Resources, Second Meeting of the North American Chapter of the Association for Computational Linguistics (2001)Google Scholar
  8. 8.
    Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string metrics for matching names and records. In: Proceedings of the KDD 2003 Workshop on Data, Washington, DC, pp. 13–18 (2003)Google Scholar
  9. 9.
    Cross, V.: Fuzzy semantic distance measures between ontological concepts. In: Proc. IEEE Annual Meeting of the Fuzzy Information Processing Society, NAFIPS 2004, vol. 2, pp. 635–640 (June 2004)Google Scholar
  10. 10.
    Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework and Graphical Development Environment for Robust NLP Tools and Applications. In: Proceedings of the 40th Anniversary Meeting of the Association for Computational Linguistics, ACL 2002 (2002)Google Scholar
  11. 11.
    Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia-based explicit semantic analysis. In: Proc. Twentieth International Joint Conference for Artificial Intelligence, IJCAI 2007, Hyderabad, India, January 6-12, pp. 1606–1611 (2007)Google Scholar
  12. 12.
    Golbeck, J., Rothstein, M.: Linking social networks on the web with foaf: A semantic web case study. In: Proc. Twenty-Third Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, pp. 1138–1143 (2008)Google Scholar
  13. 13.
    Gotoh, O.: An improved algorithm for matching biological sequences. Journal of Molecular Biology 162, 705–708 (1981)CrossRefGoogle Scholar
  14. 14.
    Ion, M., Telesca, L., Botto, F., Koshutanski, H.: An open distributed identity and trust management approach for digital community ecosystems. In: Proc. International Workshop on ICT for Business Clusters in Emerging Markets. Michigan State University (June 2007)Google Scholar
  15. 15.
    Jaro, M.A.: Advances in record-linkage methodology as applied to matching the 1985 census of Tampa, Florida. Journal of the American Statistical Association 84(406), 414–420 (1989)CrossRefGoogle Scholar
  16. 16.
    Jian, N., Hu, W., Cheng, G., Qu, Y.: Falcon-ao: Aligning ontologies with falcon. In: Proc. K-Cap 2005 Workshop on Integrating Ontologies, pp. 87–93 (2005)Google Scholar
  17. 17.
    Labitzke, S., Taranu, I., Hartenstein, H.: What your friends tell others about you: Low cost linkability of social network profiles. In: Proc. 5th International ACM Workshop on Social Network Mining and Analysis, San Diego, CA, USA, August 20 (2001)Google Scholar
  18. 18.
    Levenshtein, V.: Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Soviet Physics Doklady 10, 707 (1966)MathSciNetGoogle Scholar
  19. 19.
    Li, Y., Bandar, Z.A., McLean, D.: An approach for measuring semantic similarity between words using multiple information sources. IEEE Transactions on Knowledge and Data Engineering 15, 871–882 (2003)CrossRefGoogle Scholar
  20. 20.
    Mika, P.: Flink: Semantic web technology for the extraction and analysis of social networks. Journal of Web Semantics 3(2-3), 211–223 (2005)CrossRefGoogle Scholar
  21. 21.
    Monge, A., Elkan, C.: The field matching problem: Algorithms and applications. In: Proc. Second International Conference on Knowledge Discovery and Data Mining, pp. 267–270 (1996)Google Scholar
  22. 22.
    Mylka, A., Sauermann, L., Sintek, M., van Elst, L.: Nepomuk contact ontology. Technical report (2007)Google Scholar
  23. 23.
    Piskorski, J., Sydow, M.: Usability of string distance metrics for name matching tasks in polish. In: Proceedings of the 3rd Language and Technology Conference: Human Language Technologies as a Challenge for Computer Science and Linguistics, LTC 2007 (2007)Google Scholar
  24. 24.
    Raad, E., Chbeir, R., Dipanda, A.: User profile matching in social networks. In: Proc. 13th International Conference on Network-Based Information Systems, Takayama, Gifu, Japan, pp. 297–304 (2010)Google Scholar
  25. 25.
    Ray, S.R.: Interoperability standards in the semantic web. Journal of Computing and Information Science in Engineering, ASME 2, 65–69 (2002)CrossRefGoogle Scholar
  26. 26.
    Rowe, M., Ciravegna, F.: Getting to me: Exporting semantic social network from facebook. In: Proc. Social Data on the Web Workshop, International Semantic Web Conference (2008)Google Scholar
  27. 27.
    Sauermann, L., van Elst, L., Möller, K.: Personal information model (pimo). Oscaf recommendation, OSCAF (February 2009)Google Scholar
  28. 28.
    Scerri, S., Cortis, K., Rivera, I., Handschuh, S.: Knowledge discovery in distributed social web sharing activities. In: Making Sense of Microposts (#MSM 2012), pp. 26–33 (2012)Google Scholar
  29. 29.
    Scerri, S., Gimenez, R., Herman, F., Bourimi, M., Thiel, S.: Digital.me - towards an integrated personal information sphere. In: Proc. Federated Social Web Europe Conference, FSW 2011, Berlin, Germany (2011)Google Scholar
  30. 30.
    Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. In: Spaccapietra, S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 146–171. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  31. 31.
    Takale, S.A., Nandgaonkar, S.S.: Measuring semantic similarity between words using web documents. International Journal of Advanced Computer Science and Applications (IJACSA) 1(4) (2010)Google Scholar
  32. 32.
    Winkler, W.E.: String comparator metrics and enhanced decision rules in the fellegi-sunter model of record linkage. In: Proc. The Section on Survey Research, pp. 354–359 (1990)Google Scholar
  33. 33.
    Yang, H., Callan, J.: Learning the distance metric in a personal ontology. In: Proc. 2nd International Workshop on Ontologies and Information Systems for the Semantic Web, New York, NY, USA, pp. 17–24 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Keith Cortis
    • 1
  • Simon Scerri
    • 1
  • Ismael Rivera
    • 1
  1. 1.Digital Enterprise Research InstituteNational University of IrelandGalwayIreland

Personalised recommendations