Machine Learning for Emergent Middleware

  • Amel Bennaceur
  • Valérie Issarny
  • Daniel Sykes
  • Falk Howar
  • Malte Isberner
  • Bernhard Steffen
  • Richard Johansson
  • Alessandro Moschitti
Part of the Communications in Computer and Information Science book series (CCIS, volume 379)


Highly dynamic and heterogeneous distributed systems are challenging today’s middleware technologies. Existing middleware paradigms are unable to deliver on their most central promise, which is offering interoperability. In this paper, we argue for the need to dynamically synthesise distributed system infrastructures according to the current operating environment, thereby generating “Emergent Middleware” to mediate interactions among heterogeneous networked systems that interact in an ad hoc way. The paper outlines the overall architecture of Enablers underlying Emergent Middleware, and in particular focuses on the key role of learning in supporting such a process, spanning statistical learning to infer the semantics of networked system functions and automata learning to extract the related behaviours of networked systems.


Machine learning Natural language processing Automata learning Interoperability Automated Mediation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aarts, F., Vaandrager, F.: Learning I/O Automata. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 71–85. Springer, Heidelberg (2010), CrossRefGoogle Scholar
  2. 2.
    Alur, R., Cerny, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications for Java classes. In: Proc. POPL 2005 (2005)Google Scholar
  3. 3.
    Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Blair, G.S., Bennaceur, A., Georgantas, N., Grace, P., Issarny, V., Nundloll, V., Paolucci, M.: The Role of Ontologies in Emergent Middleware: Supporting Interoperability in Complex Distributed Systems. In: Kon, F., Kermarrec, A.-M. (eds.) Middleware 2011. LNCS, vol. 7049, pp. 410–430. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Cohn, D.A., Ghahramani, Z., Jordan, M.I.: Active learning with statistical models. J. Artif. Intell. Res. (JAIR) 4, 129–145 (1996)MATHGoogle Scholar
  6. 6.
    Esparza, J., Leucker, M., Schlund, M.: Learning workflow petri nets 113, 205–228 (2011)Google Scholar
  7. 7.
    Grinchtein, O., Jonsson, B., Pettersson, P.: Inference of Event-Recording Automata Using Timed Decision Trees. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 435–449. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Heß, A., Kushmerick, N.: Learning to attach semantic metadata to web services. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 258–273. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Howar, F., Jonsson, B., Merten, M., Steffen, B., Cassel, S.: On handling data in automata learning - considerations from the connect perspective. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp. 221–235. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register automata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 251–266. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Howar, F., Steffen, B., Merten, M.: Automata learning with automated alphabet abstraction refinement. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 263–277. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Hungar, H., Margaria, T., Steffen, B.: Test-based model generation for legacy systems. In: Proceedings of the International Test Conference, ITC 2003, September 30-October 2, vol. 1, pp. 971–980 (2003)Google Scholar
  13. 13.
    Issarny, V., Steffen, B., Jonsson, B., Blair, G., Grace, P., Kwiatkowska, M., Calinescu, R., Inverardi, P., Tivoli, M., Bertolino, A., Sabetta, A.: CONNECT Challenges: Towards Emergent Connectors for Eternal Networked Systems. In: 14th IEEE International Conference on Engineering of Complex Computer Systems (2009)Google Scholar
  14. 14.
    Joachims, T., Hofmann, T., Yue, Y., Yu, C.N.J.: Predicting structured objects with support vector machines. Commun. ACM 52(11), 97–104 (2009)CrossRefGoogle Scholar
  15. 15.
    Katakis, I., Meditskos, G., Tsoumakas, G., Bassiliades, N., Vlahavas, I.P.: On the combination of textual and semantic descriptions for automated semantic web service classification. In: Iliadis, L., Vlahavas, I., Bramer, M. (eds.) Artificial Intelligence Applications and Innovations III. IFIP, vol. 296, pp. 95–104. Springer, Boston (2009)CrossRefGoogle Scholar
  16. 16.
    Martin, D.L., Burstein, M.H., McDermott, D.V., McIlraith, S.A., Paolucci, M., Sycara, K.P., McGuinness, D.L., Sirin, E., Srinivasan, N.: Bringing semantics to web services with OWL-S. In: World Wide Web, pp. 243–277 (2007)Google Scholar
  17. 17.
    Merten, M., Steffen, B., Howar, F., Margaria, T.: Next generation learnLib. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Moschitti, A.: Efficient convolution kernels for dependency and constituent syntactic trees. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 318–329. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Moschitti, A.: Kernel methods, syntax and semantics for relational text categorization. In: Proceedings of ACM 17th Conference on Information and Knowledge Management, CIKM, Napa Valley, United States (2008)Google Scholar
  20. 20.
    Moschitti, A.: Kernel-based machines for abstract and easy modeling of automatic learning. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 458–503. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Moschitti, A., Basili, R.: Complex linguistic features for text classification: A comprehensive study. In: McDonald, S., Tait, J.I. (eds.) ECIR 2004. LNCS, vol. 2997, pp. 181–196. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: Wu, J., Chanson, S.T., Gao, Q. (eds.) Formal Methods for Protocol Engineering and Distributed Systems. IFIP AICT, vol. 28, pp. 225–240. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  23. 23.
    Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrapolating behavioral models. Int. J. Softw. Tools Technol. Transf. 11(5), 393–407 (2009)CrossRefGoogle Scholar
  24. 24.
    Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Tech. Rep. TR74-218, Department of Computer Science, Cornell University, Ithaca, New York (1974)Google Scholar
  25. 25.
    Selby, R., Porter, A.: Learning from examples: generation and evaluation of decision trees for software resource analysis. IEEE Transactions on Software Engineering 14(12) (1988)Google Scholar
  26. 26.
    Stone, P., Veloso, M.: Multiagent systems: A survey from a machine learning perspective. Autonomous Robots 8 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Amel Bennaceur
    • 1
  • Valérie Issarny
    • 1
  • Daniel Sykes
    • 1
  • Falk Howar
    • 2
  • Malte Isberner
    • 2
  • Bernhard Steffen
    • 2
  • Richard Johansson
    • 3
  • Alessandro Moschitti
    • 3
  1. 1.InriaParis-RocquencourtFrance
  2. 2.Technical University of DortmundGermany
  3. 3.University of TrentoItaly

Personalised recommendations