A Fault Tolerant Parallel Computing Scheme of Scalar Multiplication for Wireless Sensor Networks

  • Yanbo Shou
  • Hervé Guyennet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8314)


In event-driven sensor networks, when a critical event occurs, sensors should transmit messages back to base station in a secure and reliable manner. We choose Elliptic Curve Cryptography to secure the network since it offers faster computation and good security with shorter keys. In order to minimize the running time, we propose to split and distribute the computation of scalar multiplications by involving neighboring nodes in this operation. In order to improve the reliability, we have also proposed a fault tolerance mechanism. It uses half of the available cluster members as backup nodes which take over the work of faulty nodes in case of system failure. Parallel computing does consume more resources, but the results of simulation show that the computation can be significantly accelerated. This method is designed specially for applications where running time is the most important factor.


Wireless sensor networks Elliptic curves Scalar multiplication Parallel computing Fault tolerance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Computer Networks 38(4), 393–422 (2002)CrossRefGoogle Scholar
  2. 2.
    Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Computer Networks 52(12), 2292–2330 (2008)CrossRefGoogle Scholar
  3. 3.
    Werner-Allen, G., Lorincz, K., Ruiz, M., Marcillo, O., Johnson, J., Lees, J., Welsh, M.: Deploying a wireless sensor network on an active volcano. IEEE Internet Computing 10(2), 18–25 (2006)CrossRefGoogle Scholar
  4. 4.
    Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S., Turon, M.: Wireless sensor networks for structural health monitoring. In: Proceedings of the 4th International Conference on Embedded Networked Sensor Systems, pp. 427–428. ACM (2006)Google Scholar
  5. 5.
    Baker, C.R., Armijo, K., Belka, S., Benhabib, M., Bhargava, V., Burkhart, N., Der Minassians, A., Dervisoglu, G., Gutnik, L., Haick, M.B., et al.: Wireless sensor networks for home health care. In: 21st International Conference on Advanced Information Networking and Applications Workshops, AINA 2007, vol. 2, pp. 832–837. IEEE (2007)Google Scholar
  6. 6.
    Malan, D., Fulford-Jones, T., Welsh, M., Moulton, S.: Codeblue: An ad hoc sensor network infrastructure for emergency medical care. In: International Workshop on Wearable and Implantable Body Sensor Networks, vol. 5 (2004)Google Scholar
  7. 7.
    Gosnell, T., Hall, J., Jam, C., Knapp, D., Koenig, Z., Luke, S., Pohl, B., Schach von Wittenau, A., Wolford, J.: Gamma-ray identification of nuclear weapon materials. Technical report, Lawrence Livermore National Lab, Livermore, CA, US (1997)Google Scholar
  8. 8.
    Walters, J.P., Liang, Z., Shi, W., Chaudhary, V.: Wireless sensor network security: A survey. Security in Distributed, Grid, Mobile, and Pervasive Computing 1, 367 (2007)Google Scholar
  9. 9.
    Zhou, Y., Fang, Y., Zhang, Y.: Securing wireless sensor networks: a survey. IEEE Communications Surveys & Tutorials 10(3), 6–28 (2008)CrossRefGoogle Scholar
  10. 10.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Gordon, D.M.: A survey of fast exponentiation methods. Journal of Algorithms 27(1), 129–146 (1998)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Shou, Y., Guyennet, H., Lehsaini, M.: Parallel scalar multiplication on elliptic curves in wireless sensor networks. In: Frey, D., Raynal, M., Sarkar, S., Shyamasundar, R.K., Sinha, P. (eds.) ICDCN 2013. LNCS, vol. 7730, pp. 300–314. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48(177), 203–209 (1987)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)Google Scholar
  15. 15.
    Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve cryptography and RSA on 8-bit cPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Hankerson, D., Vanstone, S., Menezes, A.: Guide to elliptic curve cryptography. Springer-Verlag New York Inc. (2004)Google Scholar
  17. 17.
    Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on Information Theory 22(6), 644–654 (1976)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Lim, C.H., Lee, P.J.: More flexible exponentiation with precomputation. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 95–107. Springer, Heidelberg (1994)Google Scholar
  19. 19.
    Mishra, S., Jena, L., Pradhan, A.: Fault tolerance in wireless sensor networks. International Journal 2(10), 146–153 (2012)Google Scholar
  20. 20.
    Rajasegarar, S., Leckie, C., Palaniswami, M., Bezdek, J.C.: Distributed anomaly detection in wireless sensor networks. In: 10th IEEE Singapore International Conference on Communication systems, ICCS 2006, pp. 1–5. IEEE (2006)Google Scholar
  21. 21.
    Eskin, E., Arnold, A., Prerau, M., Portnoy, L., Stolfo, S.: A geometric framework for unsupervised anomaly detection. In: Barbará, D., Jajodia, S. (eds.) Applications of Data Mining in Computer Security. Advances in Information Security, vol. 6, pp. 77–101. Springer, US (2002)CrossRefGoogle Scholar
  22. 22.
    Chen, J., Kher, S., Somani, A.: Distributed fault detection of wireless sensor networks. In: Proceedings of the 2006 Workshop on Dependability Issues in Wireless Ad hoc Networks and Sensor Networks, pp. 65–72. ACM (2006)Google Scholar
  23. 23.
    Gupta, G., Younis, M.: Fault-tolerant clustering of wireless sensor networks. In: 2003 IEEE Wireless Communications and Networking, WCNC 2003, pp. 1579–1584. IEEE (2003)Google Scholar
  24. 24.
    Raj, R., Ramesh, M.V., Kumar, S.: Fault tolerant clustering approaches in wireless sensor network for landslide area monitoring. In: Proceedings of the 2008 International Conference on Wireless Networks (ICWN 2008), vol. 1, pp. 107–113 (2008)Google Scholar
  25. 25.
    Koushanfar, F., Potkonjak, M., Sangiovanni-vincentelli, A.: Fault tolerance in wireless sensor networks. In: Handbook of Sensor Networks: Compact Wireless and Wired Sensing Systems (2004)Google Scholar
  26. 26.
    Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd Annual Hawaii International Conference on System Sciences. IEEE (2000)Google Scholar
  27. 27.
    Burchfield, T.R., Venkatesan, S., Weiner, D.: Maximizing throughput in zigbee wireless networks through analysis, simulations and implementations. In: Proceedings of the International Workshop on Localized Algorithms and Protocols for Wireless Sensor Networks Santa Fe, pp. 15–29. Citeseer, New Mexico (2007)Google Scholar
  28. 28.
    Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H., et al.: An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications 1(4), 660–670 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yanbo Shou
    • 1
  • Hervé Guyennet
    • 1
  1. 1.University of Franche-ComtéBesançonFrance

Personalised recommendations