A Code-Based Undeniable Signature Scheme

  • Carlos Aguilar-Melchor
  • Slim Bettaieb
  • Philippe Gaborit
  • Julien Schrek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8308)

Abstract

In this work we propose the first code-based undeniable signature scheme (and more generally the first post-quantum undeniable signature scheme). The verification protocols for our scheme are 3-pass zero-knowledge protocols derived from the Stern authentication protocol. There are two main ideas in our protocol, first we remark that it is possible to obtain a full-time undeniable signature from a one-time undeniable signature simply by signing the one-time public key by a standard signature. Second, we introduce a zero-knowledge variation on the Stern authentication scheme which permits to prove that one or two different syndromes are associated (or not) to the same low weight word. We give a polynomial reduction of the security of our scheme to the security of the syndrome decoding problem.

Keywords

code based cryptography undeniable signature schemes syndrome decoding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguilar Melchor, C., Cayrel, P.-L., Gaborit, P.: A new efficient threshold ring signature scheme based on coding theory. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 1–16. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Aguilar-Melchor, C., Cayrel, P.-L., Gaborit, P., Laguillaumie, F.: A new efficient threshold ring signature scheme based on coding theory. IEEE Transactions on Information Theory 57(7), 4833–4842 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Boyar, J., Chaum, D., Damgård, I., Pedersen, T.: Convertible undeniable signatures. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 189–205. Springer, Heidelberg (1991)Google Scholar
  4. 4.
    Chaum, D.: Zero-knowledge undeniable signatures. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 458–464. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  5. 5.
    Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  6. 6.
    Chaum, D., van Antwerpen, H.: Undeniable signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)Google Scholar
  7. 7.
    Chaum, D., van Heijst, E., Pfitzmann, B.: Cryptographically strong undeniable signatures, unconditionally secure for the signer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 470–484. Springer, Heidelberg (1992)Google Scholar
  8. 8.
    Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a mcEliece-based digital signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–174. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Damgård, I., Pedersen, T.: New convertible undeniable signature schemes. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 372–386. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  10. 10.
    Finiasz, M.: Parallel-CFS strengthening the CFS mceliece-based signature scheme. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 159–170. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Finiasz, M., Sendrier, N.: Security bounds for the design of code-based cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Gaborit, P., Schrek, J.: Efficient code-based one-time signature from automorphism groups with syndrome compatibility. In: International Symposium on Information Theory (ISIT 2012), pp. 1982–1986. MIT, Boston (2012)CrossRefGoogle Scholar
  13. 13.
    Gennaro, R., Krawczyk, H., Rabin, T.: RSA-based undeniable signatures. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 132–149. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  14. 14.
    Kurosawa, K., Heng, S.-H.: 3-move undeniable signature scheme. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 181–197. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Laguillaumie, F., Vergnaud, D.: Short undeniable signatures without random oracles: The missing link. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 283–296. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Laguillaumie, F., Vergnaud, D.: Time-selective convertible undeniable signatures. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 154–171. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Libert, B., Quisquater, J.-J.: Identity based undeniable signatures. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 112–125. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Pointcheval, D.: Self-scrambling anonymizers. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 259–275. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Sakurai, K., Miyazaki, S.: An anonymous electronic bidding protocol based on a new convertible group signature scheme. In: Clark, A., Boyd, C., Dawson, E.P. (eds.) ACISP 2000. LNCS, vol. 1841, pp. 385–399. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. 20.
    Sendrier, N.: Decoding one out of many. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 51–67. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Carlos Aguilar-Melchor
    • 1
  • Slim Bettaieb
    • 1
  • Philippe Gaborit
    • 1
  • Julien Schrek
    • 1
  1. 1.XLIM-DMIUniversité de LimogesLimoges CedexFrance

Personalised recommendations