Advertisement

Hashing Mode Using a Lightweight Blockcipher

  • Hidenori Kuwakado
  • Shoichi Hirose
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8308)

Abstract

This article proposes a hashing mode using a lightweight blockcipher. Since the block size of a lightweight blockcipher is small, the hashing mode uses a double-block-length compression function that consists of two Matyas-Meyer-Oseas (MMO) modes. Tag-based applications often require a hash function to be a one-way function and a primitive for constructing a pseudorandom function. We analyze the one-wayness of the hashing mode and the pseudorandomness of the keyed hashing mode under standard assumptions of an underlying blockcipher. The analysis in the standard model is practically more significant than the analysis in the ideal-primitive model.

Keywords

hash function computational security preimage resistance pseudorandom function lightweight blockcipher 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: QUARK: a lightweight hash. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 1–15. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge functions. In: Ecrypt Hash Workshop 2007 (2007), http://sponge.noekeon.org/SpongeFunctions.pdf
  4. 4.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability of the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 181–197. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak sponge function family (2009), http://keccak.noekeon.org/
  6. 6.
    Black, J.A., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based hash-function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.: SPONGENT: A lightweight hash function. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y.: Hash functions and RFID tags: Mind the gap. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 283–299. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen, L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S., Yalçın, T.: PRINCE - a low-latency block cipher for pervasive computing applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damgård revisited: How to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Fleischmann, E., Forler, C., Lucks, S., Wenzel, J.: The collision security of MDC-4. Cryptology ePrint Archive, Report 2012/096 (2012), http://eprint.iacr.org/
  14. 14.
    Fleischmann, E., Forler, C., Lucks, S., Wenzel, J.: Weimar-DM: A highly secure double-length compression function. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 152–165. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Gong, Z., Nikova, S., Law, Y.W.: KLEIN: A new family of lightweight block ciphers. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. Cryptology ePrint Archive, Report 2012/600 (2012), http://eprint.iacr.org/
  18. 18.
    Hirose, S.: Some plausible constructions of double-block-length hash functions. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Hirose, S., Kuwakado, H., Yoshida, H.: Compression functions using a dedicated blockcipher for lightweight hashing. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 346–364. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Hong, D., Kwon, D.: New preimage attack on MDC-4. Cryptology ePrint Archive, Report 2012/633 (2012), http://eprint.iacr.org/
  21. 21.
    ISO/IEC 10118-2:2010, Information technology – security techniques – hash-functions – part 2: Hash-functions using an n-bit block cipher (2010)Google Scholar
  22. 22.
    Jonsson, J., Robshaw, M.: Securing RSA-KEM via the AES. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 29–46. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Knudsen, L.R., Mendel, F., Rechberger, C., Thomsen, S.S.: Cryptanalysis of MDC-2. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 106–120. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Lai, X., Massey, J.L.: Hash functions based on block ciphers. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  25. 25.
    Lee, J., Stam, M., Steinberger, J.: The preimage security of double-block-length compression functions. Cryptology ePrint Archive, Report 2011/210 (2011), http://eprint.iacr.org/
  26. 26.
    Mennink, B.: On the collision and preimage security of MDC-4 in the ideal cipher model. Cryptology ePrint Archive, Report 2012/113 (2012), http://eprint.iacr.org/
  27. 27.
    Naito, Y.: Blockcipher-based double-length hash functions for pseudorandom oracles. Cryptology ePrint Archive, Report 2010/566 (2010), http://eprint.iacr.org/
  28. 28.
    National Institute of Standards and Technology, Advanced encryption standard (AES), Federal Information Processing Standards Publication 197 (2001), http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
  29. 29.
    National Institute of Standards and Technology, Secure hash standard, Federal Information Processing Standards Publication 180-2 (August 2002), http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
  30. 30.
    National Institute of Standards and Technology, The keyed-hash message authentication code (HMAC), Federal Information Processing Standards Publication, FIPS PUB 198-1 (2008), http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
  31. 31.
    Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo: An ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  32. 32.
    Steinberger, J.P.: The collision intractability of MDC-2 in the ideal-cipher model. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 34–51. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  33. 33.
    Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: A lightweight, versatile block cipher. In: ECRYPT Workshop on Lightweight Cryptography 2011 (2011)Google Scholar
  34. 34.
    Wu, W., Zhang, L.: LBlock: A lightweight block cipher. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hidenori Kuwakado
    • 1
  • Shoichi Hirose
    • 2
  1. 1.Kansai UniversityTakatsuki-shiJapan
  2. 2.University of FukuiFukui-shiJapan

Personalised recommendations