Characterization and Processing of Nanocellulose Thermosetting Composites

  • Ronald C. Sabo
  • Rani F. Elhajjar
  • Craig M. Clemons
  • Krishna M. Pillai
Chapter

Abstract

Fiber-reinforced polymer composites have gained popularity through their advantages over conventional metallic materials. Most polymer composites are traditionally made with reinforcing fibers such as carbon or glass. However, there has been recent interest in sourcing these reinforcing fibers from renewable, natural resources. Nanocellulose-based reinforcements constitute a new class of these naturally sourced reinforcements. Some unique behavior of nanocellulose creates both opportunities and challenges. This chapter reviews the progress and some of the remaining issues related to the materials, processing, and performance of nanocellulose reinforced thermosetting composites.

Keywords

Nanocellulose Thermosets Mechanical properties Nonmechanical properties Applications 

References

  1. 1.
    Mohseni Languri E, Moore RD, Masoodi R, Pillai KM, Sabo R (2010) An approach to model resin flow through swelling porous media made of natural fibers. Paper presented at the the 10th international conference on flow processes in composite materials (FPCM10), Monte Verità, 11–15 Jul 2010Google Scholar
  2. 2.
    Goutianos S, Peijs T, Nystrom B, Skrifvars M (2006) Development of flax fibre based textile reinforcements for composite applications. Appl Compos Mater 16:199–215. doi:10.1007/s10443-006-9010-2ADSGoogle Scholar
  3. 3.
    Nickel J, Riedel U (2003) Activities in biocomposites. Mater Today 6:44–48. doi:10.1016/S1369-7021(03)00430-9Google Scholar
  4. 4.
    Summerscales J, Dissanayake N, Virk A, Hall W (2010) A review of bast fibres and their composites. Part 2 – composites. Compos Part A 42:1336–1344. doi:10.1016/j.compositesa.2010.05.020Google Scholar
  5. 5.
    Bledski AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274Google Scholar
  6. 6.
    Reux F, Verpoest I (eds) (2012) Flax and hemp fibres: a natural solution for the composite industry, 1st edn. JEC Composites, ParisGoogle Scholar
  7. 7.
    Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994. doi:10.1039/c0cs00108bGoogle Scholar
  8. 8.
    Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A Mater 89(2):461–466. doi:10.1007/s00339-007-4175-6ADSGoogle Scholar
  9. 9.
    Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A Mater 81(6):1109–1112. doi:10.1007/s00339-005-3316-zADSGoogle Scholar
  10. 10.
    Nogi M, Handa K, Nakagaito AN, Yano H (2005) Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix. Appl Phys Lett 87(24). Art No 243110, doi:10.1063/1.2146056Google Scholar
  11. 11.
    Nogi M, Ifuku S, Abe K, Handa K, Nakagaito AN, Yano H (2006) Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites. Appl Phys Lett 88(13). Art No 133124, doi:10.1063/1.2191667Google Scholar
  12. 12.
    Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598. doi:10.1002/adma.200803174Google Scholar
  13. 13.
    Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20:1849–1852. doi:10.1002/adma.200702559Google Scholar
  14. 14.
    Nogi M, Yano H (2009) Optically transparent nanofiber sheets by deposition of transparent materials: a concept for a roll-to-roll processing. Appl Phys Lett 94. doi:10.1063/1.3154547Google Scholar
  15. 15.
    Nogia M, Abe K, Handa K, Nakatsubo F, Ifuku S, Yano H (2006) Property enhancement of optically transparent bionanofiber composites by acetylation. Appl Phys Lett 89. doi:10.1063/1.2403901Google Scholar
  16. 16.
    Sabo R, Seo J-H, Ma Z (2012) Cellulose nanofiber composite substrates for flexible electronics. In: 2012 TAPPI international conference on nanotechnology for renewable materials, MontrealGoogle Scholar
  17. 17.
    Okahisa Y, Yoshida A, Miyaguchi S, Yano H (2009) Optically transparent wood–cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Compos Sci Technol 69(11‚Äì12):1958–1961. doi:10.1016/j.compscitech.2009.04.017Google Scholar
  18. 18.
    Minelli M, Baschetti MG, Doghieri F, Ankerfors M, Lindström T, Siró I, Plackett D (2010) Investigation of mass transport properties of microfibrillated cellulose (MFC) films. J Membr Sci 358(1–2):67–75. doi:10.1016/j.memsci.2010.04.030Google Scholar
  19. 19.
    Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16(1):75–85. doi:10.1007/s10570-008-9244-2Google Scholar
  20. 20.
    Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2008) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165. doi:10.1021/bm801065uGoogle Scholar
  21. 21.
    Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17(3):559–574. doi:10.1007/s10570-009-9393-yGoogle Scholar
  22. 22.
    Berglund L (2005) Cellulose-based nanocomposites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites. Taylor & Francis, Boca Raton, pp 807–832Google Scholar
  23. 23.
    Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494. doi:10.1007/s10570-010-9405-yGoogle Scholar
  24. 24.
    Eichorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–315. doi:10.1039/C0SM00142BADSGoogle Scholar
  25. 25.
    Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500Google Scholar
  26. 26.
    Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191–1206. doi:10.1002/cjce.20554Google Scholar
  27. 27.
    Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626Google Scholar
  28. 28.
    Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33. doi:10.1007/s10853-009-3874-0ADSGoogle Scholar
  29. 29.
    Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048–1054Google Scholar
  30. 30.
    Sehaqui H, Ezekiel Mushi N, Morimune S, Salajkova M, Nishino T, Berglund LA (2012) Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl Mater Interfaces 4(2):1043–1049. doi:10.1021/am2016766Google Scholar
  31. 31.
    Viet D, Beck-Candanedo S, Gray D (2007) Dispersion of cellulose nanocrystals in polar organic solvents. Cellulose 14(2):109–113. doi:10.1007/s10570-006-9093-9Google Scholar
  32. 32.
    Eyholzer C, Bordeanu N, Lopez-Suevos F, Rentsch D, Zimmermann T, Oksman K (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17(1):19–30. doi:10.1007/s10570-009-9372-3Google Scholar
  33. 33.
    Beck S, Berry RM, Bouchard J (2012) Dispersing dried nanocrystalline cellulose in water. Paper presented at the 2012 TAPPI nanotechnology conference for renewable materials, MontrealGoogle Scholar
  34. 34.
    Peng Y, Gardner D, Han Y (2012) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19(1):91–102. doi:10.1007/s10570-011-9630-zGoogle Scholar
  35. 35.
    Gardner DJ, Han Y, Peng Y (2011) Methods for drying cellulose nanofibrils. US Patent 0,260,348, A1Google Scholar
  36. 36.
    Mertaniemi H, Laukkanen A, Teirfolk J-E, Ikkala O, Ras RHA (2012) Functionalized porous microparticles of nanofibrillated cellulose for biomimetic hierarchically structured superhydrophobic surfaces. RSC Adv 2(7):2882–2886Google Scholar
  37. 37.
    Herrick FW (1984) Redispersable microfibrillated cellulose. US Patent 4,481,076Google Scholar
  38. 38.
    Yuan H, Nishiyama Y, Wada M, Kuga S (2006) Surface acylation of cellulose whiskers by drying aqueous emulsion. Biomacromolecules 7:696–700Google Scholar
  39. 39.
    Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212Google Scholar
  40. 40.
    Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, Cavaillé JY (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6(5):2732–2739Google Scholar
  41. 41.
    Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43(9):2645–2651Google Scholar
  42. 42.
    Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432Google Scholar
  43. 43.
    Sabo R, Clemons C, Reiner R, Agarwal U (2008) Cellulose nanocrystal reinforced polyolefin composites. In: TAPPI-FPS international conference on nanotechnology for the Forest Products Industry, St. LouisGoogle Scholar
  44. 44.
    Bondeson D, Oksman K (2007) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interfaces 14(7–9):617–630. doi:10.1163/156855407782106519Google Scholar
  45. 45.
    Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626. doi:10.1021/bm0493685Google Scholar
  46. 46.
    Lönnberg H, Fogelström L, Azizi Samir MAS, Berglund L, Malmström E, Hult A (2008) Surface grafting of microfibrillated cellulose with poly(e-caprolactone) – synthesis and characterization. Eur Polym J 44:2991–2997Google Scholar
  47. 47.
    Goussé C, Chanzy H, Cerrada ML, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45(5):1569–1575Google Scholar
  48. 48.
    Lu J, Askeland P, Drzal L (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1296Google Scholar
  49. 49.
    Han Y, Gardner DJ, Peng Y (2011) A new processing method for production of dried cellulose nanofibrils with in situ surface modification and their thermoplastic composites. Paper presented at the 11th international conference on wood and biofiber plastic composites & nanotechnology in wood composites symposium, Madison, 18 May 2011Google Scholar
  50. 50.
    Ankerfors M, Lindström T (2007) On the manufacture and use of nanocellulose. In: Ninth international conference on wood and biofiber plastic composites, Madison, 21–23 May 2007Google Scholar
  51. 51.
    Ankerfors M, Lindström T (2009) Nanocellulose developments in Scandinavia. In: Paper and coating chemistry symposium, HamiltonGoogle Scholar
  52. 52.
    Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585. doi:10.1021/bm800038nGoogle Scholar
  53. 53.
    Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A Mater Sci Process 80(1):155–159. doi:10.1007/s00339-003-2225-2ADSGoogle Scholar
  54. 54.
    Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79(4):1086–1093. doi:10.1016/j.carbpol.2009.10.045Google Scholar
  55. 55.
    Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11(9):2195–2198. doi:10.1021/bm100490sGoogle Scholar
  56. 56.
    Kunnari V, Tammelin T, Kaljunen T, Vartiainen J, Hippi U, Salminen A (2012) Transparent plastic-like flim material from birch fibril pulp. In: 12th international conference on biocomposites, Niagara Falls, 6–8 May 2012Google Scholar
  57. 57.
    Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48(24):11211–11219. doi:10.1021/ie9011672Google Scholar
  58. 58.
    Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10(7):1992–1996. doi:10.1021/bm900414tGoogle Scholar
  59. 59.
    Gindl W, Keckes J (2007) Drawing of self-reinforced cellulose films. J Appl Polym Sci 103(4):2703–2708Google Scholar
  60. 60.
    Bledski AK, Jaszkiewicz A, Murr M, Sperber VE, Lϋtzendorf R, Reuβmann T (2008) Processing techniques for natural- and wood-fibre composites. In: Pickering KL (ed) Properties and performance of natural-fibre composites. Woodhead, Cambridge, pp 163–192Google Scholar
  61. 61.
    Woodings C (2001) A brief history of regenerated cellulose fibres. In: Calvin W (ed) Regenerated cellulose fibres. Woodhead, Boca Raton, pp 1–21Google Scholar
  62. 62.
    Adusumali R-B, Reifferscheid M, Weber H, Roeder T, Sixta H, Gindl W (2006) Mechanical properties of regenerated cellulose fibres for composites. Macromol Symp 244:119–125Google Scholar
  63. 63.
    Ganster J, Fink H-P (2006) Novel cellulose fibre reinforced thermoplastic materials. Cellulose 13(3):271–280. doi:10.1007/s10570-005-9045-9Google Scholar
  64. 64.
    Iwamoto S, Isogai A, Iwata T (2011) Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromolecules 12(3):831–836. doi:10.1021/bm101510rGoogle Scholar
  65. 65.
    Walther A, Timonen JV, Diez I, Laukkanen A, Ikkala O (2011) Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Adv Mater 23(26):2924–2928. doi:10.1002/adma.201100580Google Scholar
  66. 66.
    Bruce DM, Hobson RN, Farrent JW, Hepworth DG (2005) High-performance composites from low-cost plant primary cell walls. Compos Part A 36:1486–1493. doi:10.1016/j.compositesa.2005.03.008Google Scholar
  67. 67.
    Omrani A, Simon LC, Rostami AA (2008) Influences of cellulose nanofiber on the epoxy network formation. Mater Sci Eng A 490:131–137. doi:10.1016/j.msea.2008.01.012Google Scholar
  68. 68.
    Matos Ruiz M, Cavaillé JY, Dusfresne A, Graillat C, Gérard J-F (2001) New waterborne epoxy coatings based on cellulose nanofillers. Macromol Symp 169:211–222Google Scholar
  69. 69.
    Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106:2817–2824. doi:10.1002/app.26946Google Scholar
  70. 70.
    Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A Mater 78(4):547–552. doi:10.1007/s00339-003-2453-5ADSGoogle Scholar
  71. 71.
    Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A Mater 80(1):155–159. doi:10.1007/s00339-003-2225-2ADSGoogle Scholar
  72. 72.
    Masoodi R, El-Hajjar RF, Pillai KM, Sabo R (2012) Mechanical characterization of cellulose nanofiber and bio-based epoxy composite. Mater Des 36:570–576. doi:10.1016/j.matdes.2011.11.042Google Scholar
  73. 73.
    Nogi M, Abe K, Handa K, Nakatsubo F, Ifuku S, Yano H (2006) Property enhancement of optically transparent bionanofiber composites by acetylation. Appl Phys Lett 89. doi:10.1063/1.2403901Google Scholar
  74. 74.
    Behabtua N, Green MJ, Pasquali M (2008) Carbon nanotube-based neat fibers. Nano Today 3(5–6):24–34Google Scholar
  75. 75.
    Uddin AJ, Araki J, Gotoh Y (2011) Characterization of the poly(vinyl alcohol)/cellulose whisker gel spun fibers. Compos Part A Appl Sci Manuf 42(7):741–747. doi:10.1016/j.compositesa.2011.02.012Google Scholar
  76. 76.
    Uddin AJ, Araki J, Gotoh Y (2011) Toward “strong” green nanocomposites: polyvinyl alcohol reinforced with extremely oriented cellulose whiskers. Biomacromolecules 12(3):617–624. doi:10.1021/bm101280fGoogle Scholar
  77. 77.
    Lu P, Hsieh Y-L (2009) Cellulose nanocrystal-filled poly(acrylic acid) nanocomposite fibrous membranes. Nanotechnology 20:1–9Google Scholar
  78. 78.
    Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681Google Scholar
  79. 79.
    Peresin MS, Habibi Y, Vesterinen A-H, Rojas OJ, Pawlak JJ, Seppala JV (2010) Effect of moisture on electrospun nanofiber composites of poly(vinyl alcohol) and cellulose nanocrystals. Biomacromolecules 11:2471–2477Google Scholar
  80. 80.
    Akesson D, Skrifvars M, Hagstrom B, Walkenstrom P, Seppala J (2009) Processing of structural composites from biobased thermoset resins and natural fibres by compression moulding. J Biobased Mater Bio 3(3):215–225. doi:10.1166/Jbmb.2009.1036Google Scholar
  81. 81.
    Akesson D, Skrifvars M, Walkenstrom P (2009) Preparation of thermoset composites from natural fibres and acrylate modified soybean oil resins. J Appl Polym Sci 114(4):2502–2508. doi:10.1002/App.30773Google Scholar
  82. 82.
    Adekunle K, Akesson D, Skrifvars M (2010) Biobased composites prepared by compression molding with a novel thermoset resin from soybean oil and a natural-fiber reinforcement. J Appl Polym Sci 116(3):1759–1765. doi:10.1002/App.31634Google Scholar
  83. 83.
    Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. Bioresources 3(3):929–980Google Scholar
  84. 84.
    Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A, Gandini A (2005) Modification of cellulose fibers with functionalized silanes: effect of the fiber treatment on the mechanical performances of cellulose–thermoset composites. J Appl Polym Sci 98(3):974–984. doi:10.1002/app.22133Google Scholar
  85. 85.
    Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49(5):1285–1296. doi:10.1016/j.polymer.2008.01.028Google Scholar
  86. 86.
    Capadona JR, Van Den Berg O, Capadona LA, Schroeter M, Rowan SJ, Tyler DJ, Weder C (2007) A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat Nano 2(12):765–769. http://www.nature.com/nnano/journal/v2/n12/suppinfo/nnano.2007.379_S1.html
  87. 87.
    Ruiz MM, Cavaille JY, Dufresne A, Gerard JF, Graillat C (2000) Processing and characterization of new thermoset nanocomposites based on cellulose whiskers. Compos Interfaces 7(2):117–131Google Scholar
  88. 88.
    Masoodi R, El-Hajjar RF, Pillai KM, Sabo R (2012) Mechanical characterization of cellulose nanofiber and bio-based epoxy composite. Mater Des 36:570–576. doi:10.1016/j.matdes.2011.11.042Google Scholar
  89. 89.
    Entropy R (2010) Entropy resins. http://www.entropyresins.com/sites/default/files/SuperSap-100_1000_TDS.pdf. Accessed 5 Jan 2012
  90. 90.
    Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund LA, Ikkala O (2008) Soft Matter 4:2492ADSGoogle Scholar
  91. 91.
    Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Biomacromolecules 8:1934Google Scholar
  92. 92.
    Turbak AF, Snyder FW, Sandberg KR (1983) J Appl Polym Sci Appl Polym Symp 37:815Google Scholar
  93. 93.
    Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) Eur Polym J 43:3434Google Scholar
  94. 94.
    Hüsing N, Schubert U (1998) Angew Chem Int Ed 37:45Google Scholar
  95. 95.
    Tan H, Pillai KM (2010) Processing polymer matrix composites composites for blast protection. In: Uddin N (ed) Blast protection of civil infrastructures and vehicles using composites. Woodhead Publishing Limited, CambridgeGoogle Scholar
  96. 96.
    Tan H, Pillai KM (2010) PORE-FLOW – a software to model the flow of liquids in single- and dual-scale porous media. http://www4.uwm.edu/porous
  97. 97.
    Jiang S, Yang L, Alsoliby S, Zhou G (2007) PCG solver and its computational complexity for implicit control-volume finite-element method of RTM simulation. Compos Sci Technol 67(15–16):3316–3322Google Scholar
  98. 98.
    Soukane S, Trochu F (2006) Application of the level set method to the simulation of resin transfer molding. Compos Sci Technol 66(7–8):1067–1080Google Scholar
  99. 99.
    Shojaei A, Gaffarian SR, Karimian SMH (2002) Numerical simulation of three-dimensional mold filling process in resin transfer molding using quasi-steady state and partial saturation formulations. Compos Sci Technol 62(6):861–879Google Scholar
  100. 100.
    Mohan RV, Ngo ND, Tamma KK (1999) On a pure finite-element-based methodology for resin transfer mold filling simulations. Polym Eng Sci 39(1):26–43Google Scholar
  101. 101.
    Wu CH (1998) Simulation of reactive liquid composite molding using an Eularian-Lagrangian approach. Int Polym Process 4:398Google Scholar
  102. 102.
    Phelan FR Jr (1997) Simulation of the injection process in resin transfer molding. Polym Compos 18(4):460–476Google Scholar
  103. 103.
    Bruschke MV, Advani SG (1991) RTM filling simulation of complex three dimensional shell-like structures. SAMPE Q 23(1):2–11Google Scholar
  104. 104.
    Young WB, Han K, Fong LH, Lee LJ, Liou MJ (1991) Analysis of resin injection molding in molds with preplaced fiber mats. Polym Compos 12:391–403Google Scholar
  105. 105.
    Young WB, Rupel K, Han K, Lee LJ, Liou MJ (1991) Analysis of resin injection molding in molds with preplaced fiber mats, II: numerical simulation and experiments of mold filling. Polym Compos 12:30–38Google Scholar
  106. 106.
    Fracchia CA, Castro J III (1989) CLT A finite element/control volume simulation of resin transfer molding. In: Proceedings of the American Society for Composites fourth technical conference. Technomic, Lancaster, pp 157–166Google Scholar
  107. 107.
    Molnar J, Trevino L, Lee LJ (1989) Liquid flow in molds with prelocated fiber mats. Polym Compos 10:414–423Google Scholar
  108. 108.
    O’Donnell A, Dweib MA, Wool RP (2004) Natural fiber composites with plant oil-based resin. Compos Sci Technol 64:1135–1145Google Scholar
  109. 109.
    Umer R, Bickerton S, Fernyhough A (2007) Wood fiber mats as reinforcements for thermosets. In: Handbook of engineering biopolymers. Hanser Gardner, Munich, pp 693–713Google Scholar
  110. 110.
    Richardson MOW, Zhang ZY (2000) Experimental investigation and flow visualization of the resin transfer moulding process for non-woven hemp reinforced phenolic composites. Compos Pt A 31:1303–1310Google Scholar
  111. 111.
    Rowell R, O’Dell J, Basak RK, Sarkar M (1997) Applications of jute in resin transfer molding. http://www.fpl.fs.fed.us/documents/pdf1997/rowel97h.pdf
  112. 112.
    Masoodi R, Pillai KM (2011) Modeling the processing of natural fiber composites made using liquid composites molding. In: Pilla S (ed) Handbook of bioplastics and biocomposites engineering applications. Scrivener Publishing, LLC, Salem, MassachusettsGoogle Scholar
  113. 113.
    Masoodi R, Pillai KM, Grahl N, Tan H (2012) Numerical simulation of LCM mold-filling during the manufacture of natural fiber composites. J Reinf Plast Compos 31(6)Google Scholar
  114. 114.
    Masoodi R, Javadi A, Pillai KM, Sabo R (2011) An experimental study on swelling of cellulose nano-fiber films in epoxy resins and water. Paper presented at the 2011 Spring SAMPE technical conference and exhibition – state of the industry: advanced materials, applications, and processing technology, Long BeachGoogle Scholar
  115. 115.
    Javadi A, Pillai KM, Sabo R (2012) An experimental estimation of liquid absorption coefficient for cellulose nano-fiber films. Paper presented at the 11th international conference on flow processes in composite materials (FPCM11), Auckland, 9–12 Jul 2012Google Scholar
  116. 116.
    Floros M, Hojabri L, Abraham E, Jose J, Thomas S, Pothan L, Leao AL, Narine S (2012) Enhancement of thermal stability, strength and extensibility of lipid-based polyurethanes with cellulose-based nanofibers. Polym Degrad Stab. doi:10.1016/j.polymdegradstab.2012.02.016Google Scholar
  117. 117.
    Lemahieu L, Bras J, Tiquet P, Augier S, Dufresne A (2011) Extrusion of nanocellulose-reinforced nanocomposites using the Dispersed Nano-Objects Protective Encapsulation (DOPE) process. Macromol Mater Eng 296(11):984–991. doi:10.1002/Mame.201100015Google Scholar
  118. 118.
    Tang X, Alavi S (2011) Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydr Polym 85(1):7–16. doi:10.1016/j.carbpol.2011.01.030Google Scholar
  119. 119.
    Nakagaito AN, Yano H (2008) The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose 15(4):555–559Google Scholar
  120. 120.
    Nakagaito A, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A Mater Sci Process 80(1):155–159ADSGoogle Scholar
  121. 121.
    Svagan AJ, Samir MASA, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8(8):2556–2563Google Scholar
  122. 122.
    Okubo K, Fujii T, Thostenson ET (2009) Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Compos Part A Appl Sci Manuf 40(4):469–475. doi:10.1016/j.compositesa.2009.01.012Google Scholar
  123. 123.
    Gabr MH, Elrahman MA, Okubo K, Fujii T (2010) Effect of microfibrillated cellulose on mechanical properties of plain-woven CFRP reinforced epoxy. Compos Struct 92(9):1999–2006. doi:10.1016/j.compstruct.2009.12.009Google Scholar
  124. 124.
    (2012) EMPA Wood Laboratory researchers develop production process for nanocellulose powder. Addit Polym 2012 (1):2–3. doi:10.1016/s0306-3747(12)70003-9Google Scholar
  125. 125.
    Agbenyega J (2010) Nanopaper: nanotechnology. Mater Today 13(10):12. doi:10.1016/s1369-7021(10)70179-6Google Scholar
  126. 126.
    Nystrom G, Mihranyan A, Razaq A, Lindstrom T, Nyholm L, Stromme M (2010) A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B 114(12):4178–4182. doi:10.1021/Jp911272mGoogle Scholar
  127. 127.
    Zhu JY, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13(5):1339–1344Google Scholar
  128. 128.
    Qing Y, Sabo R, Wu Y, Cai Z (2013) Resin impregnation of cellulose nanofibril films facilitated by water swelling. Cellulose (Submitted Aug 2012) 20:303–313Google Scholar
  129. 129.
    Paralikar SA, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membr Sci 320(1–2):248–258. doi:10.1016/j.memsci.2008.04.009Google Scholar
  130. 130.
    Azeredo HMC, Mattoso LHC, Avena-Bustillos RJ, Ceotto G, Munford ML, Wood D, McHugh TH (2010) Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J Food Sci 75(1):N1–N7. doi:10.1111/J.1750-3841.2009.01386.XGoogle Scholar
  131. 131.
    Belbekhouche S, Bras J, Siqueira G, Chappey C, Lebrun L, Khelifi B, Marais S, Dufresne A (2011) Water sorption behavior and gas barrier properties of cellulose whiskers and microfibrils films. Carbohydr Polym 83(4):1740–1748. doi:10.1016/j.carbpol.2010.10.036Google Scholar
  132. 132.
    Bradley EL, Castle L, Chaudhry Q (2011) Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends Food Sci Technol 22(11):604–610. doi:10.1016/j.tifs.2011.01.002Google Scholar
  133. 133.
    de Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42(9):1240–1253. doi:10.1016/j.foodres.2009.03.019Google Scholar
  134. 134.
    Charlet G, Gray DG (1987) Solid cholesteric films cast from aqueous (hydroxypropyl) cellulose. Macromolecules 20(1):33–38. doi:10.1021/ma00167a007ADSGoogle Scholar
  135. 135.
    Giasson J, Revol J-F, Ritcey AM, Gray DG (1988) Electron microscopic evidence for cholesteric structure in films of cellulose and cellulose acetate. Biopolymers 27(12):1999–2004. doi:10.1002/bip.360271210Google Scholar
  136. 136.
    Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172. doi:10.1016/S0141-8130(05)80008-XGoogle Scholar
  137. 137.
    Revol J-F, Godbout D, Gray D, G (1997) Solidified liquid crystals of cellulose with optically variable properties. US Patent 5,629,055, 13 May 1997Google Scholar
  138. 138.
    Revol J-F, Godbout L, Gray GD (1998) Solid self-assembled films of cellulose with chiral nematic order and optically variable properties. J Pulp Pap Sci 24(5)Google Scholar
  139. 139.
    Walker C (2012) Thinking small is leading to big changes. Paper 360° vol Jan/Feb 2012. TAPPIGoogle Scholar
  140. 140.
    Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494Google Scholar
  141. 141.
    Zhu JY, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13:1339–1344. doi:10.1039/c1gc15103gGoogle Scholar
  142. 142.
    Advanced materials – solutions for demanding applications (2004) Pub. No. LIT-2004-341 (03/04). AikenGoogle Scholar
  143. 143.
    Lilholt H, Lawther JM (2000) Natural organic fibers. In: Chou T-W (ed) Comprehensive composite materials, vol 1, Fiber reinforcements and general theory of composites. Elsevier, New York, pp 1–23Google Scholar
  144. 144.
    Gindl W, Reifferscheid M, Adusumalli R-B, Weber H, Röder T, Sixta H, Schöberl T (2008) Anisotropy of the modulus of elasticity in regenerated cellulose fibres related to molecular orientation. Polymer 49:792–799Google Scholar
  145. 145.
    Qing Y, Sabo R, Wu Y, Cai Z (2012) High-performance cellulose nanofibril composite films. Bioresources 7(3):3064–3075Google Scholar
  146. 146.
    Nakagaito A, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A Mater Sci Process 78(4):547–552ADSGoogle Scholar
  147. 147.
    Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106(4):2817–2824Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ronald C. Sabo
    • 1
  • Rani F. Elhajjar
    • 2
  • Craig M. Clemons
    • 1
  • Krishna M. Pillai
    • 2
  1. 1.USDA Forest Products LaboratoryMadisonUSA
  2. 2.College of Engineering & Applied ScienceUniversity of WisconsinMilwaukeeUSA

Personalised recommendations