On Promptness in Parity Games

  • Fabio Mogavero
  • Aniello Murano
  • Loredana Sorrentino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8312)


Parity games are a powerful formalism for the automatic synthesis and verification of reactive systems. They are closely related to alternating ω-automata and emerge as a natural method for the solution of the μ-calculus model checking problem. Due to these strict connections, parity games are a well-established environment to describe liveness properties such as “every request that occurs infinitely often is eventually responded”. Unfortunately, the classical form of such a condition suffers from the strong drawback that there is no bound on the effective time that separates a request from its response, i.e., responses are not promptly provided. Recently, to overcome this limitation, several parity game variants have been proposed, in which quantitative requirements are added to the classic qualitative ones.

In this paper, we make a general study of the concept of promptness in parity games that allows to put under a unique theoretical framework several of the cited variants along with new ones. Also, we describe simple polynomial reductions from all these conditions to either Büchi or parity games, which simplify all previous known procedures. In particular, they improve the complexity results of cost and bounded-cost parity games. Indeed, we provide solution algorithms showing that determining the winner of these games lies in UPTimeCoUPTime.


Parity Condition Model Check Liveness Property Full Parity Transition Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Almagor, S., Hirshfeld, Y., Kupferman, O.: Promptness in omega-Regular Automata. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 22–36. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T.A.: Finitary fairness. ACM Trans. Program. Lang. Syst. 20(6) (1998)Google Scholar
  3. 3.
    Aminof, B., Mogavero, F., Murano, A.: Synthesis of hierarchical systems. In: Arbab, F., Ölveczky, P.C. (eds.) FACS 2011. LNCS, vol. 7253, pp. 42–60. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Aminof, B., Mogavero, F., Murano, A.: Synthesis of hierarchical systems. Science of Comp. Program (2013), doi:
  5. 5.
    Aminof, B., Kupferman, O., Murano, A.: Improved model checking of hierarchical systems. Inf. Comput. 210, 68–86 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Berwanger, D.: Admissibility in infinite games. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 188–199. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Generalized mean-payoff and energy games. In: FSTTCS 2010. LIPIcs, vol. 8, pp. 505–516 (2010)Google Scholar
  8. 8.
    Chatterjee, K., Henzinger, T.A., Horn, F.: Finitary winning in ω-regular games. ACM Trans. Comput. Logic 11(1) (2009)Google Scholar
  9. 9.
    Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Mean-payoff parity games. In: LICS 2005, pp. 178–187 (2005)Google Scholar
  10. 10.
    Chatterjee, K., Jurdzinski, M., Henzinger, T.A.: Quantitative stochastic parity games. In: SODA 2004, pp. 121–130 (2004)Google Scholar
  11. 11.
    Clarke, E.M., Emerson, E.A.: Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal Logic. In: LP 1981. LNCS, vol. 131, pp. 52–71 (1981)Google Scholar
  12. 12.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (2002)Google Scholar
  13. 13.
    Emerson, E.A., Jutla, C.: Tree automata, μ-calculus and determinacy. In: FOCS 1991, pp. 368–377 (1991)Google Scholar
  14. 14.
    Fijalkow, N., Zimmermann, M.: Cost-parity and cost-streett games. In: FSTTCS 2012, pp. 124–135 (2012)Google Scholar
  15. 15.
    Horn, F., Thomas, W., Wallmeier, N.: Optimal strategy synthesis in request-response games. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 361–373. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Jurdzinski, M.: Deciding the winner in parity games is in up ∩ co-up. Inf. Process. Lett. 68(3), 119–124 (1998)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kozen, D.: Results on the Propositional mu-Calculus. TCS 27(3), 333–354 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kupferman, O., Morgenstern, G., Murano, A.: Typeness for omega-regular automata. Int. J. Found. Comput. Sci. 17(4), 869–884 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kupferman, O., Piterman, N., Vardi, M.Y.: From liveness to promptness. Formal Methods in System Design 34(2), 83–103 (2009)CrossRefzbMATHGoogle Scholar
  20. 20.
    Kupferman, O., Vardi, M., Wolper, P.: Module Checking. IC 164(2), 322–344 (2001)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Kupferman, O., Vardi, M.Y., Wolper, P.: An Automata Theoretic Approach to Branching-Time Model Checking. JACM 47(2), 312–360 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Pnueli, A.: The Temporal Logic of Programs. In: FOCS 1977, pp. 46–57 (1977)Google Scholar
  23. 23.
    Queille, J.P., Sifakis, J.: Specification and Verification of Concurrent Programs in Cesar. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) SP 1981. LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1981)Google Scholar
  24. 24.
    Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theor. Comput. Sci. 200(1-2), 135–183 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fabio Mogavero
    • 1
  • Aniello Murano
    • 1
  • Loredana Sorrentino
    • 1
  1. 1.Università degli Studi di Napoli Federico IIItaly

Personalised recommendations