Large formal mathematical libraries consist of millions of atomic inference steps that give rise to a corresponding number of proved statements (lemmas). Analogously to the informal mathematical practice, only a tiny fraction of such statements is named and re-used in later proofs by formal mathematicians. In this work, we suggest and implement criteria defining the estimated usefulness of the HOL Light lemmas for proving further theorems. We use these criteria to mine the large inference graph of all lemmas in the core HOL Light library, adding thousands of the best lemmas to the pool of named statements that can be re-used in later proofs. The usefulness of the new lemmas is then evaluated by comparing the performance of automated proving of the core HOL Light theorems with and without such added lemmas.


Automate Reasoning Eigenvector Centrality Large Theory Automate Prove Inference Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection for mathematics by corpus analysis and kernel methods. Journal of Automated Reasoning (2013),
  2. 2.
    Alama, J., Kühlwein, D., Urban, J.: Automated and Human Proofs in General Mathematics: An Initial Comparison. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 37–45. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Avrachenkov, K., Dobrynin, V., Nemirovsky, D., Pham, S.K., Smirnova, E.: Pagerank based clustering of hypertext document collections. In: Myaeng, S.-H., Oard, D.W., Sebastiani, F., Chua, T.-S., Leong, M.-K. (eds.) SIGIR, pp. 873–874. ACM (2008)Google Scholar
  4. 4.
    Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.): ITP 2013. LNCS, vol. 7998. Springer, Heidelberg (2013)zbMATHGoogle Scholar
  5. 5.
    Grabowski, A., Korniłowicz, A., Naumowicz, A.: Mizar in a nutshell. Journal of Formalized Reasoning 3(2), 153–245 (2010)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Hales, T.C.: Introduction to the Flyspeck project. In: Coquand, T., Lombardi, H., Roy, M.-F. (eds.) Dagstuhl Seminar Proceedings, vol. 05021. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl (2005)Google Scholar
  7. 7.
    Harrison, J.: HOL Light: A tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  8. 8.
    Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 299–314. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Kaliszyk, C., Krauss, A.: Scalable LCF-style proof translation. In: Blazy, et al. (eds.) [4], pp. 51–66Google Scholar
  10. 10.
    Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. CoRR, abs/1211.7012 (2012)Google Scholar
  11. 11.
    Kaliszyk, C., Urban, J.: Automated reasoning service for HOL Light. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS (LNAI), vol. 7961, pp. 120–135. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Kaliszyk, C., Urban, J.: Stronger automation for Flyspeck by feature weighting and strategy evolution. In: Blanchette, J.C., Urban, J. (eds.) PxTP 2013. EPiC Series, vol. 14, pp. 87–95. EasyChair (2013)Google Scholar
  13. 13.
    Kühlwein, D., Blanchette, J.C., Kaliszyk, C., Urban, J.: MaSh: Machine learning for Sledgehammer. In: Blazy, et al. (eds.) [4], pp. 35–50Google Scholar
  14. 14.
    Kühlwein, D., Schulz, S., Urban, J.: E-MaLeS 1.1. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 407–413. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Kühlwein, D., van Laarhoven, T., Tsivtsivadze, E., Urban, J., Heskes, T.: Overview and evaluation of premise selection techniques for large theory mathematics. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 378–392. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    McCune, W.: Prover9 and Mace4. 2005–2010,
  17. 17.
    Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J. Autom. Reasoning 40(1), 35–60 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing order to the Web. Technical report, Stanford Digital Library Technologies Project (1998)Google Scholar
  19. 19.
    Pudlák, P.: Search for faster and shorter proofs using machine generated lemmas. In: Sutcliffe, G., Schmidt, R., Schulz, S. (eds.) 3rd International Joint Conference on Automated Reasoning, Proceedings of the FLoC 2006 Workshop on Empirically Successful Computerized Reasoning. CEUR Workshop Proceedings, vol. 192, pp. 34–52 (2006)Google Scholar
  20. 20.
    Puzis, Y., Gao, Y., Sutcliffe, G.: Automated generation of interesting theorems. In: Sutcliffe, G., Goebel, R. (eds.) FLAIRS Conference, pp. 49–54. AAAI Press (2006)Google Scholar
  21. 21.
    Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI Commun. 15(2-3), 91–110 (2002)zbMATHGoogle Scholar
  22. 22.
    Schulz, S.: Learning search control knowledge for equational deduction. DISKI, vol. 230. Infix Akademische Verlagsgesellschaft (2000)Google Scholar
  23. 23.
    Schulz, S.: E - A Brainiac Theorem Prover. AI Commun. 15(2-3), 111–126 (2002)zbMATHGoogle Scholar
  24. 24.
    Sutcliffe, G.: The Design and Implementation of a Compositional Competition-Cooperation Parallel ATP System. In: de Nivelle, H., Schulz, S. (eds.) Proceedings of the 2nd International Workshop on the Implementation of Logics, pp. 92–102. MPI-I-2001-2-006 in Max-Planck-Institut für Informatik. Research Report (2001)Google Scholar
  25. 25.
    Sutcliffe, G., Puzis, Y.: SRASS - a semantic relevance axiom selection system. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 295–310. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Urban, J.: MPTP - Motivation, Implementation, First Experiments. Journal of Automated Reasoning 33(3-4), 319–339 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Urban, J.: MoMM - fast interreduction and retrieval in large libraries of formalized mathematics. Int. J. on Artificial Intelligence Tools 15(1), 109–130 (2006)CrossRefGoogle Scholar
  28. 28.
    Urban, J.: BliStr: The Blind Strategymaker. CoRR, abs/1301.2683 (2013)Google Scholar
  29. 29.
    Urban, J., Sutcliffe, G., Pudlák, P., Vyskočil, J.: MaLARea SG1 - Machine Learner for Automated Reasoning with Semantic Guidance. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 441–456. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  30. 30.
    Urban, J., Vyskočil, J.: Theorem proving in large formal mathematics as an emerging AI field. In: Bonacina, M.P., Stickel, M.E. (eds.) McCune Festschrift. LNCS (LNAI), vol. 7788, pp. 240–257. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  31. 31.
    Urban, J., Vyskočil, J., Štěpánek, P.: MaLeCoP: Machine learning connection prover. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS (LNAI), vol. 6793, pp. 263–277. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  32. 32.
    Veroff, R.: Using hints to increase the effectiveness of an automated reasoning program: Case studies. J. Autom. Reasoning 16(3), 223–239 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle framework. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33–38. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  34. 34.
    Wos, L., Overbeek, R., Lusk, E.L., Boyle, J.: Automated Reasoning: Introduction and Applications. Prentice-Hall (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Cezary Kaliszyk
    • 1
    • 2
  • Josef Urban
    • 1
    • 2
  1. 1.University of InnsbruckInnsbruckAustria
  2. 2.Radboud UniversityNijmegenNetherlands

Personalised recommendations