Advertisement

The Complexity of Clausal Fragments of LTL

  • Alessandro Artale
  • Roman Kontchakov
  • Vladislav Ryzhikov
  • Michael Zakharyaschev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8312)

Abstract

We introduce and investigate a number of fragments of propositional temporal logic LTL over the flow of time (ℤ, <). The fragments are defined in terms of the available temporal operators and the structure of the clausal normal form of the temporal formulas. We determine the computational complexity of the satisfiability problem for each of the fragments, which ranges from NLogSpace to PTime, NP and PSpace.

Keywords

Temporal Logic Arithmetic Progression Linear Temporal Logic Propositional Variable Horn Clause 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apostol, T.: Introduction to Analytic Number Theory. Springer (1976)Google Scholar
  2. 2.
    Artale, A., Calvanese, D., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Reasoning over extended ER models. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 277–292. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and relations. Journal of Artificial Intelligence Research 36, 1–69 (2009)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Past and future of DL-Lite. In: Proc. of AAAI, pp. 243–248 (2010)Google Scholar
  5. 5.
    Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Complexity of reasoning over temporal data models. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 174–187. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: The Complexity of Clausal Fragments of LTL. CoRR abs/1306.5088 (2013)Google Scholar
  7. 7.
    Bauland, M., Schneider, T., Schnoor, H., Schnoor, I., Vollmer, H.: The complexity of generalized satisfiability for linear temporal logic. Logical Methods in Computer Science 5(1) (2009)Google Scholar
  8. 8.
    Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams. Artificial Intelligence 168(1-2), 70–118 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: The DL-Lite family. Journal of Automated Reasoning 39(3), 385–429 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chen, C.-C., Lin, I.-P.: The computational complexity of satisfiability of temporal Horn formulas in propositional linear-time temporal logic. Information Processing Letters 45(3), 131–136 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chrobak, M.: Finite automata and unary languages. Theoretical Computer Science 47(2), 149–158 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Demri, S., Schnoebelen, P.: The complexity of propositional linear temporal logics in simple cases. Information and Computation 174(1), 84–103 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dixon, C., Fisher, M., Konev, B.: Tractable temporal reasoning. In: Proc. of IJCAI, pp. 318–323 (2007)Google Scholar
  14. 14.
    Fisher, M.: A resolution method for temporal logic. In: Proc. of IJCAI, pp. 99–104. Morgan Kaufmann (1991)Google Scholar
  15. 15.
    Fisher, M., Dixon, C., Peim, M.: Clausal temporal resolution. ACM Transactions on Computational Logic 2(1), 12–56 (2001)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gabbay, D., Hodkinson, I., Reynolds, M.: Temporal Logic: Mathematical Foundations and Computational Aspects, vol. 1. Oxford University Press (1994)Google Scholar
  17. 17.
    Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-dimensional modal logics: theory and applications. Elsevier (2003)Google Scholar
  18. 18.
    Halpern, J., Reif, J.: The propositional dynamic logic of deterministic, well-structured programs. In: Proc. of FOCS, pp. 322–334. IEEE (1981)Google Scholar
  19. 19.
    Lichtenstein, O., Pnueli, A., Zuck, L.D.: The glory of the past. In: Parikh, R. (ed.) Logic of Programs 1985. LNCS, vol. 193, pp. 196–218. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  20. 20.
    Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal description logics: A survey. In: Proc. of TIME, pp. 3–14. IEEE Comp. Society (2008)Google Scholar
  21. 21.
    Markey, N.: Past is for free: On the complexity of verifying linear temporal properties with past. Acta Informatica 40(6-7), 431–458 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ono, H., Nakamura, A.: On the size of refutation Kripke models for some linear modal and tense logics. Studia Logica 39, 325–333 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Plaisted, D.: A decision procedure for combinations of propositional temporal logic and other specialized theories. Journal of Automated Reasoning 2, 171–190 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Rabinovich, A.: Temporal logics over linear time domains are in PSPACE. In: Kučera, A., Potapov, I. (eds.) RP 2010. LNCS, vol. 6227, pp. 29–50. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Reynolds, M.: The complexity of decision problems for linear temporal logics. Journal of Studies in Logic 3(1), 19–50 (2010)Google Scholar
  26. 26.
    Sistla, A., Clarke, E.: The complexity of propositional linear temporal logics. In: Proc. of STOC, pp. 159–168. ACM (1982)Google Scholar
  27. 27.
    Stockmeyer, L., Meyer, A.: Word problems requiring exponential time: Preliminary report. In: Proc. of STOC, pp. 1–9. ACM (1973)Google Scholar
  28. 28.
    To, A.W.: Unary finite automata vs. arithmetic progressions. Information Processing Letters 109(17), 1010–1014 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alessandro Artale
    • 1
  • Roman Kontchakov
    • 2
  • Vladislav Ryzhikov
    • 1
  • Michael Zakharyaschev
    • 2
  1. 1.KRDB Research CentreFree University of Bozen-BolzanoBolzanoItaly
  2. 2.Department of Computer Science and Information SystemsBirkbeck, University of LondonLondonUK

Personalised recommendations