Zenon Modulo: When Achilles Outruns the Tortoise Using Deduction Modulo

  • David Delahaye
  • Damien Doligez
  • Frédéric Gilbert
  • Pierre Halmagrand
  • Olivier Hermant
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8312)


We propose an extension of the tableau-based first order automated theorem prover Zenon to deduction modulo. The theory of deduction modulo is an extension of predicate calculus, which allows us to rewrite terms as well as propositions, and which is well suited for proof search in axiomatic theories, as it turns axioms into rewrite rules. We also present a heuristic to perform this latter step automatically, and assess our approach by providing some experimental results obtained on the benchmarks provided by the TPTP library, where this heuristic is able to prove difficult problems in set theory in particular. Finally, we describe an additional backend for Zenon that outputs proof certificates for Dedukti, which is a proof checker based on the λΠ-calculus modulo.


Tableaux Deduction Modulo Rewriting Automated Theorem Proving Proof Checking Zenon Dedukti 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abrial, J.-R.: The B-Book, Assigning Programs to Meanings. Cambridge University Press, Cambridge (1996) ISBN 0521496195Google Scholar
  2. 2.
    Boespflug, M., Carbonneaux, Q., Hermant, O.: The λΠ-Calculus Modulo as a Universal Proof Language. In: Pichardie, D., Weber, T. (eds.) Proof Exchange for Theorem Proving (PxTP), Manchester, UK, pp. 28–43 (June 2012)Google Scholar
  3. 3.
    Bonichon, R.: TaMeD: A Tableau Method for Deduction Modulo. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 445–459. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Bonichon, R., Delahaye, D., Doligez, D.: Zenon: An Extensible Automated Theorem Prover Producing Checkable Proofs. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 151–165. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Brauner, P., Houtmann, C., Kirchner, C.: Principles of Superdeduction. In: Logic in Computer Science (LICS), Wrocław, Poland, pp. 41–50. IEEE Computer Society Press (July 2007)Google Scholar
  6. 6.
    Burel, G.: Efficiently Simulating Higher-Order Arithmetic by a First-Order Theory Modulo. Logical Methods in Computer Science (LMCS) 7(1), 1–31 (2011)MathSciNetGoogle Scholar
  7. 7.
    Burel, G.: Experimenting with Deduction Modulo. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 162–176. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Dowek, G.: What is a Theory? In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 50–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Dowek, G., Hardin, T., Kirchner, C.: Theorem Proving Modulo. Journal of Automated Reasoning (JAR) 31(1), 33–72 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Jacquel, M., Berkani, K., Delahaye, D., Dubois, C.: Tableaux Modulo Theories using Superdeduction: An Application to the Verification of B Proof Rules with the Zenon Automated Theorem Prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 332–338. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Prawitz, D.: Natural Deduction. A Proof-Theoretical Study. Stockholm Studies in Philosophy 3 (1965)Google Scholar
  12. 12.
    Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning (JAR) 43(4), 337–362 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    The BWare Project (2012),
  14. 14.
    Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge University Press, Cambridge (1996) ISBN 0521779111Google Scholar
  15. 15.
    Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics: An Introduction. Elsevier, Amsterdam (1988) ISBN 0444705066Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • David Delahaye
    • 1
  • Damien Doligez
    • 2
  • Frédéric Gilbert
    • 2
  • Pierre Halmagrand
    • 1
  • Olivier Hermant
    • 3
  1. 1.Cedric/Cnam/InriaParisFrance
  2. 2.InriaParisFrance
  3. 3.CRIMINES ParisTechFontainebleauFrance

Personalised recommendations