Advertisement

Comparison of LTL to Deterministic Rabin Automata Translators

  • František Blahoudek
  • Mojmír Křetínský
  • Jan Strejček
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8312)

Abstract

Increasing interest in control synthesis and probabilistic model checking caused recent development of LTL to deterministic ω-automata translation. The standard approach represented by ltl2dstar tool employs Safra’s construction to determinize a Büchi automaton produced by some LTL to Büchi automata translator. Since 2012, three new LTL to deterministic Rabin automata translators appeared, namely Rabinizer, LTL3DRA, and Rabinizer 2. They all avoid Safra’s construction and work on LTL fragments only. We compare performance and automata produced by the mentioned tools, where ltl2dstar is combined with several LTL to Büchi automata translators: besides traditionally used LTL2BA, we also consider LTL− >NBA, LTL3BA, and Spot.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babiak, T., Blahoudek, F., Křetínský, M., Strejček, J.: Effective translation of LTL to deterministic Rabin automata: Beyond the (F,G)-fragment. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 24–39. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Babiak, T., Křetínský, M., Řehák, V., Strejček, J.: LTL to Büchi automata translation: Fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)Google Scholar
  4. 4.
    Church, A.: Logic, arithmetic, and automata. In: ICM 1962, pp. 23–35. Institut Mittag-Leffler (1962)Google Scholar
  5. 5.
    Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J. ACM 42(4), 857–907 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Duret-Lutz, A.: LTL translation improvements in Spot. In: VECoS 2011, Electronic Workshops in Computing. British Computer Society (2011)Google Scholar
  7. 7.
    Duret-Lutz, A.: Manipulating LTL formulas using Spot 1.0. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 442–445. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state verification. In: ICSE 1999, pp. 411–420. IEEE (1999)Google Scholar
  9. 9.
    Fritz, C.: Constructing Büchi automata from linear temporal logic using simulation relations for alternating Büchi automata. In: Ibarra, O.H., Dang, Z. (eds.) CIAA 2003. LNCS, vol. 2759, pp. 35–48. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Gaiser, A., Křetínský, J., Esparza, J.: Rabinizer: Small deterministic automata for LTL(F,G). In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 72–76. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Gastin, P., Oddoux, D.: Fast LTL to Büchi Automata Translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Geldenhuys, J., Hansen, H.: Larger automata and less work for LTL model checking. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 53–70. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Holzmann, G.: The Spin model checker: primer and reference manual, 1st edn. Addison-Wesley Professional (2003)Google Scholar
  14. 14.
    Klein, J.: ltl2dstar – LTL to deterministic Streett and Rabin automata, http://www.ltl2dstar.de
  15. 15.
    Klein, J.: Linear time logic and deterministic omega-automata. Master’s thesis, University of Bonn (2005)Google Scholar
  16. 16.
    Klein, J., Baier, C.: Experiments with deterministic ω-automata for formulas of linear temporal logic. Theor. Comput. Sci. 363(2), 182–195 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Klein, J., Baier, C.: On-the-fly stuttering in the construction of deterministic ω-automata. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 51–61. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Křetínský, J., Esparza, J.: Deterministic automata for the (F, G)-fragment of LTL. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 7–22. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Kupferman, O.: Recent challenges and ideas in temporal synthesis. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 88–98. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Křetínský, J.: Personal communication (2013)Google Scholar
  21. 21.
    Křetínský, J., Garza, R.L.: Rabinizer 2: Small deterministic automata for LTL∖GU. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 446–450. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  22. 22.
    Pelánek, R.: Beem: Benchmarks for explicit model checkers. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity automata. Logical Methods in Computer Science 3(3) (2007)Google Scholar
  24. 24.
    Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372, pp. 652–671. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  25. 25.
    Rozier, K.Y., Vardi, M.Y.: LTL Satisfiability Checking. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 149–167. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Safra, S.: On the complexity of omega-automata. In: FOCS 1988, pp. 319–327. IEEE Computer Society (1988)Google Scholar
  27. 27.
    Schewe, S.: Tighter bounds for the determinisation of Büchi automata. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 167–181. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Tauriainen, H., Heljanko, K.: Testing LTL formula translation into Büchi automata. International Journal on Software Tools for Technology Transfer (STTT) 4(1), 57–70 (2002)CrossRefGoogle Scholar
  29. 29.
    Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In: FOCS 1985, pp. 327–338. IEEE Computer Society (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • František Blahoudek
    • 1
  • Mojmír Křetínský
    • 1
  • Jan Strejček
    • 1
  1. 1.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations